标签
PostgreSQL , 异步消息 , 触发器 , 规则 , insert on conflict , 实时分析
背景
在很多业务系统中,为了定位问题、运营需要、分析需要或者其他需求,会在业务中设置埋点,记录用户的行为在业务系统中产生的日志,也叫FEED日志。
比如订单系统、在业务系统中环环相扣,从购物车、下单、付款、发货,收货(还有纠纷、退款等等),一笔订单通常会产生若干相关联的记录。
每个环节产生的属性可能是不一样的,有可能有新的属性产生,也有可能变更已有的属性值。
为了便于分析,通常有必要将订单在整个过程中产生的若干记录(若干属性),合并成一条记录(订单大宽表)。
通常业务系统会将实时产生的订单FEED数据写入消息队列,消息队列使得数据变成了流动的数据:
RDS PG + OSS + HDB PG 分钟清洗和主动检测
数据通过消息队列消费后,实时写入RDS PG,在RDS PG进行订单FEED的合并,写入OSS外部表。(支持压缩格式,换算成裸数据的写入OSS的速度约100MB/s/会话)
HDB PG从OSS外部表读取(支持压缩格式,换算成裸数据的读取OSS的速度约100MB/s/数据节点),并将订单FEED数据合并到全量订单表。
《打造云端流计算、在线业务、数据分析的业务数据闭环 - 阿里云RDS、HybridDB for PostgreSQL最佳实践》
数据进入HDB PG后,通过规则SQL,从全量订单表中,挖掘异常数据(或者分析)。
通过这种方案,实现了海量订单FEED数据的分钟级准实时分析。
这个方案已支撑了双十一业务,高吞吐、低延迟,丝般柔滑。
毫秒级FEED监测与反馈方案
技术永远是为业务服务的,分钟级延迟虽然说已经很高了,但是在一些极端情况下,可能需要更低的延迟。
实际上RDS PostgreSQL还有更强的杀手锏,可以实现毫秒级的异常FEED数据发现和反馈。
流式处理+异步消息,方法如下:
1、通过触发机制结合异步消息通道实现。
2、通过pipeline,流式SQL结合异步消息通道实现。
应用程序监听消息通道(listen channel),数据库则将异常数据写入到消息通道(notify channel, message)。实现异常数据的主动异步推送。
毫秒级FEED监测与反馈架构设计
RDS PG设计
1、分实例,提高系统级吞吐。(例如单实例处理能力是15万行/s,那么100个实例,可以支撑1500万行/s的实时处理。)
例如:
DB0, DB1, DB2, DB3, ..., DB255
映射关系:
db0, host?, port?
db1, host?, port?
...
2、实例内使用分表,提高单实例并行处理吞吐。当规则众多时,分表可以提高单实例的规则处理吞吐。
例如
tbl0, tbl1, tbl2, ..., tbl127
tbl128, tbl129, tbl130, ..., tbl255
映射关系:
tbl0, db?
tbl1, db?
...
HDB PG设计
HDB PG依旧保留,用于PB级数据量的海量数据实时分析。
数据通路依旧采用OSS,批量导入的方式。
DEMO
1、创建订单feed全宽表(当然,我们也可以使用jsonb字段来存储所有属性。因为PostgreSQL支持JSONB类型哦。PostgreSQL支持的多值类型还有hstore, xml等。)
create table feed(id int8 primary key, c1 int, c2 int, c3 int, c4 int, c5 int, c6 int, c7 int, c8 int, c9 int, c10 int, c11 int, c12 int);
2、订单FEED数据的写入,例如A业务系统,写入订单的c1,c2字段。B业务系统,写入订单的c3,c4字段。......
使用on conflict do something语法,进行订单属性的合并。
insert into feed (id, c1, c2) values (2,2,30001) on conflict (id) do update set c1=excluded.c1, c2=excluded.c2 ;
insert into feed (id, c3, c4) values (2,99,290001) on conflict (id) do update set c3=excluded.c3, c4=excluded.c4 ;
3、建立订单FEED的实时监测规则,当满足条件时,向PostgreSQL的异步消息中发送消息。监听该通道的APP,循环从异步消息获取数据,即可满足消息的实时消费。
规则可以保留在TABLE中,也可以写在触发器代码中,也可以写在UDF代码中。
3.1、如果数据是批量写入的,可以使用语句级触发器,降低触发器函数被调用的次数,提高写入吞吐。
create or replace function tg1() returns trigger as $$
declare
begin
-- 规则定义,实际使用时,可以联合规则定义表
-- c2大于1000时,发送异步消息
perform pg_notify('channel_1', 'Resone:c2 overflow::'||row_to_json(inserted)) from inserted where c2>1000;
-- 多个规则,写单个notify的方法。
-- perform pg_notify(
-- 'channel_1',
-- case
-- when c2>1000 then 'Resone:c2 overflow::'||row_to_json(inserted)
-- when c1>200 then 'Resone:c1 overflow::'||row_to_json(inserted)
-- end
-- )
-- from inserted
-- where
-- c2 > 1000
-- or c1 > 200;
-- 多个规则,可以写多个notify,或者合并成一个NOTIFY。
return null;
end;
$$ language plpgsql strict;
3.2、如果数据是单条写入的,可以使用行级触发器。(本例后面的压测使用这个)
create or replace function tg2() returns trigger as $$
declare
begin
-- 规则定义,实际使用时,可以联合规则定义表
-- c2大于9999时,发送异步消息
perform pg_notify('channel_1', 'Resone:c2 overflow::'||row_to_json(NEW)) where NEW.c2>9999;
-- 多个规则,调用单个notify,写一个CHANNEL的方法。
-- perform pg_notify(
-- 'channel_1',
-- case
-- when c2>1000 then 'Resone:c2 overflow::'||row_to_json(NEW)
-- when c1>200 then 'Resone:c1 overflow::'||row_to_json(NEW)
-- end
-- )
-- where
-- NEW.c2 > 10000
-- or NEW.c1 > 200;
-- 多个规则,调用单个notify,写多个CHANNEL的方法。
-- perform pg_notify(
-- case
-- when c2>1000 then 'channel_1'
-- when c1>200 then 'channel_2'
-- end,
-- case
-- when c2>1000 then 'Resone:c2 overflow::'||row_to_json(NEW)
-- when c1>200 then 'Resone:c1 overflow::'||row_to_json(NEW)
-- end
-- )
-- where
-- NEW.c2 > 1000
-- or NEW.c1 > 200;
-- 多个规则,可以写多个notify,或者合并成一个NOTIFY。
-- 例如
-- perform pg_notify('channel_1', 'Resone:c2 overflow::'||row_to_json(NEW)) where NEW.c2 > 1000;
-- perform pg_notify('channel_2', 'Resone:c1 overflow::'||row_to_json(NEW)) where NEW.c1 > 200;
-- 也可以把规则定义在TABLE里面,实现动态的规则
-- 规则不要过于冗长,否则会降低写入的吞吐,因为是串行处理规则。
-- udf的输入为feed类型以及rule_table类型,输出为boolean。判断逻辑定义在UDF中。
-- perfrom pg_notify(channel_column, resone_column||'::'||row_to_json(NEW)) from rule_table where udf(NEW::feed, rule_table);
return null;
end;
$$ language plpgsql strict;
3.3、如上代码中所述,规则可以定义在很多地方。
4、创建触发器。
4.1、语句级触发器(批量写入,建议采用)
create trigger tg1 after insert on feed REFERENCING NEW TABLE AS inserted for each statement execute procedure tg1();
create trigger tg2 after update on feed REFERENCING NEW TABLE AS inserted for each statement execute procedure tg1();
4.2、行级触发器(单步写入建议采用),(本例后面的压测使用这个)
create trigger tg1 after insert on feed for each row execute procedure tg2();
create trigger tg2 after update on feed for each row execute procedure tg2();
5、协商好通道名称。
6、应用端监听消息通道。
listen channel_1;
接收消息:
loop
sleep ?;
get 消息;
end loop
7、写入订单数据,每行数据都会实时过触发器,在触发器中写好了逻辑,当满足一些规则时,向协商好的消息通道发送消息。
postgres=# insert into feed (id, c1, c2) values (2,2,30001) on conflict (id) do update set c1=excluded.c1, c2=excluded.c2 ;
INSERT 0 1
8、接收到的消息样本如下:
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":2,"c1":2,"c2":30001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
9、批量插入
postgres=# insert into feed (id, c1, c2) select id,random()*100, random()*1001 from generate_series(1,10000) t(id) on conflict (id) do update set c1=excluded.c1, c2=excluded.c2 ;
INSERT 0 10000
Time: 59.528 ms
一次接收到的样本如下:
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":362,"c1":92,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":4061,"c1":90,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":4396,"c1":89,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":5485,"c1":72,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":6027,"c1":56,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":6052,"c1":91,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":7893,"c1":84,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":8158,"c1":73,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
10、更新数据
postgres=# update feed set c1=1;
UPDATE 10000
Time: 33.444 ms
接收到的异步消息样本如下:
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":1928,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":2492,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":2940,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":2981,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":4271,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":4539,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":7089,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":7619,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":8001,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":8511,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":8774,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":9394,"c1":1,"c2":1001,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 38445.
压测
1、假设每1万条记录中,有一条异常记录需要推送,这样的频率算是比较现实的。
vi test.sql
\set id random(1,10000000)
\set c1 random(1,1001)
\set c2 random(1,10000)
insert into feed (id, c1, c2) values (:id, :c1, :c2) on conflict (id) do update set c1=excluded.c1, c2=excluded.c2 ;
2、压测结果,167190 行/s处理吞吐。
transaction type: ./test.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 20060111
latency average = 0.335 ms
latency stddev = 0.173 ms
tps = 167148.009836 (including connections establishing)
tps = 167190.475312 (excluding connections establishing)
script statistics:
- statement latencies in milliseconds:
0.002 \set id random(1,10000000)
0.001 \set c1 random(1,1001)
0.000 \set c2 random(1,10000)
0.332 insert into feed (id, c1, c2) values (:id, :c1, :c2) on conflict (id) do update set c1=excluded.c1, c2=excluded.c2 ;
3、监听到的异步消息采样
postgres=# listen channel_1;
LISTEN
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":3027121,"c1":393,"c2":10000,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 738.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":5623104,"c1":177,"c2":10000,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 758.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":3850742,"c1":365,"c2":10000,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 695.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":5244809,"c1":55,"c2":10000,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 716.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":4062585,"c1":380,"c2":10000,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 722.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":8536437,"c1":560,"c2":10000,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 695.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":7327211,"c1":365,"c2":10000,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 728.
Asynchronous notification "channel_1" with payload "Resone:c2 overflow::{"id":431739,"c1":824,"c2":10000,"c3":null,"c4":null,"c5":null,"c6":null,"c7":null,"c8":null,"c9":null,"c10":null,"c11":null,"c12":null}" received from server process with PID 731.
单实例分表的schemaless设计
请参考如下用法或案例,目的是自动建表,自动分片。
《PostgreSQL 在铁老大订单系统中的schemaless设计和性能压测》
《PostgreSQL 按需切片的实现(TimescaleDB插件自动切片功能的plpgsql schemaless实现)》
《PostgreSQL 时序最佳实践 - 证券交易系统数据库设计 - 阿里云RDS PostgreSQL最佳实践》
jdbc 异步消息使用例子
https://jdbc.postgresql.org/documentation/81/listennotify.html
import java.sql.*;
public class NotificationTest {
public static void main(String args[]) throws Exception {
Class.forName("org.postgresql.Driver");
String url = "jdbc:postgresql://localhost:5432/test";
// Create two distinct connections, one for the notifier
// and another for the listener to show the communication
// works across connections although this example would
// work fine with just one connection.
Connection lConn = DriverManager.getConnection(url,"test","");
Connection nConn = DriverManager.getConnection(url,"test","");
// Create two threads, one to issue notifications and
// the other to receive them.
Listener listener = new Listener(lConn);
Notifier notifier = new Notifier(nConn);
listener.start();
notifier.start();
}
}
class Listener extends Thread {
private Connection conn;
private org.postgresql.PGConnection pgconn;
Listener(Connection conn) throws SQLException {
this.conn = conn;
this.pgconn = (org.postgresql.PGConnection)conn;
Statement stmt = conn.createStatement();
stmt.execute("LISTEN mymessage");
stmt.close();
}
public void run() {
while (true) {
try {
// issue a dummy query to contact the backend
// and receive any pending notifications.
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT 1");
rs.close();
stmt.close();
org.postgresql.PGNotification notifications[] = pgconn.getNotifications();
if (notifications != null) {
for (int i=0; i<notifications.length; i++) {
System.out.println("Got notification: " + notifications[i].getName());
}
}
// wait a while before checking again for new
// notifications
Thread.sleep(500);
} catch (SQLException sqle) {
sqle.printStackTrace();
} catch (InterruptedException ie) {
ie.printStackTrace();
}
}
}
}
class Notifier extends Thread {
private Connection conn;
public Notifier(Connection conn) {
this.conn = conn;
}
public void run() {
while (true) {
try {
Statement stmt = conn.createStatement();
stmt.execute("NOTIFY mymessage");
stmt.close();
Thread.sleep(2000);
} catch (SQLException sqle) {
sqle.printStackTrace();
} catch (InterruptedException ie) {
ie.printStackTrace();
}
}
}
}
libpq 异步消息的使用方法
https://www.postgresql.org/docs/10/static/libpq-notify.html
触发器的用法
https://www.postgresql.org/docs/10/static/sql-createtrigger.html
注意事项
1、异步消息快速接收,否则会占用实例 $PGDATA/pg_notify
的目录空间。
2、异步消息上限,没有上限,和存储有个。
buffer大小:
/*
* The number of SLRU page buffers we use for the notification queue.
*/
#define NUM_ASYNC_BUFFERS 8
3、异步消息可靠性,每个异步消息通道,PG都会跟踪监听这个通道的会话已接收到的消息的位置偏移。
新发起的监听,只从监听时该通道的最后偏移开始发送,该偏移之前的消息不会被发送。
消息接收后,如果没有任何监听需要,则会被清除。
监听消息通道的会话,需要持久化,也就是说会话断开的话,(未接收的消息,以及到会话重新监听这段时间,新产生的消息,都收不到)
4、如果需要强可靠性(替换掉异步消息,使用持久化的模式)
方法:触发器内pg_notify改成insert into feedback_table ....;
持久化消息的消费方法,改成如下(阅后即焚模式):
with t1 as (select ctid from feedback_table order by crt_time limit 100)
delete from feedback_table where
ctid = any (array(select ctid from t1))
returning *;
持久化消息,一样能满足10万行以上的消费能力(通常异常消息不会那么多,所以这里可以考虑使用单个异常表,多个订单表)。
只不过会消耗更多的RDS PG的IOPS,(产生写 WAL,VACUUM WAL。)
其他
1、已推送的异常,当数据更新后,可能会被再次触发,通过在逻辑中对比OLD value和NEW value可以来规避这个问题。本文未涉及。实际使用是可以改写触发器代码。
参考
《在PostgreSQL中实现update | delete limit - CTID扫描实践 (高效阅后即焚)》
《(流式、lambda、触发器)实时处理大比拼 - 物联网(IoT)\金融,时序处理最佳实践》
《PostgreSQL 10.0 preview 功能增强 - 触发器函数内置中间表》
https://www.postgresql.org/docs/10/static/sql-createtrigger.html
https://jdbc.postgresql.org/documentation/81/listennotify.html