安装闭源Nvidia驱动:
- 删去自带nvidia驱动
方式一:面板删除全删干净。
方式二:
mhwd -li #查看已安装的显卡驱动
sudo mhwd -r video-nvidia#卸载对应驱动
mhwd -l #查看可安装显卡驱动
- 切换低版本内核
#删除不需要的内核版本
mhwd-kernel -li#查看已安装内核
sudo mhwd-kernel -r xxx#删除不需要的内核
- 安装nvidia驱动
#选择与内核相对应的版本,不要带390xx的旧显卡驱动,不带尾缀的会自动安装最新可用版本的驱动
pacman -S nvidia nvidia-utils nvidia-settings
4.千万不要重启!!
接下来参看这位博主的博客archlinux安装nvidia-1050ti闭源驱动教程,亲测
抄一下作业,方便自己以后找错感谢@https://blog.csdn.net/u014025444
$ lspci | egrep ‘VGA|3D’ 出现如下格式:
---------------------------------------------------------------------- 00:02.0 VGA compatible controller: Intel Corporation UHD Graphics 630
(Desktop) 01:00.0 VGA compatible controller: NVIDIA Corporation GP107M
[GeForce GTX 1050 Ti Mobile] (rev a1)
#生成配置文件
$ nvidia-xconfig
$ nano /usr/share/sddm/scripts/Xsetup
xrandr --setprovideroutputsource modesetting NVIDIA-0
xrandr --auto
#修改配置文件
$ nano /etc/X11/xorg.conf
---------------------------------------------------------------------- Section “Module”
#此部分可能没有,自行添加
load “modesetting” EndSectionSection “Device”
Identifier “Device0”
Driver “nvidia”
VendorName “NVIDIA Corporation”
BusID “1:0:0” #此处填刚刚查询到的BusID
Option “AllowEmptyInitialConfiguration” EndSection
重启后,命令行运行nvidia-smi
最后,当然是要使用GPU来进行深度学习啦。
1.老生常谈:安装Ananconda环境,配置conda清华源加速下载。
2.安装pytorch-gpu,cuda,cudnn
#注意不要加 -c,这里CUDA版本只要比Nidia驱动版本号低,就可以正常运行^_^
conda install pytorch torchvision torchaudio cudatoolkit=10.2 pytorch
#上过程会自动安装CUDA,因此只需要安装CUDNN即可。
conda install cudnn
#待安装的cudnn版本会自动根据已经安装的cuda版本号进行匹配安装。
最后测试
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 13 14:07:46 2021
@author: p
"""
"""
View more, visit my tutorial page: https://mofanpy.com/tutorials/
My Youtube Channel: https://www.youtube.com/user/MorvanZhou
Dependencies:
torch: 0.4
torchvision
"""
import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
# torch.manual_seed(1)
#
EPOCH = 10
BATCH_SIZE = 1
LR = 0.001
DOWNLOAD_MNIST = True
train_data = torchvision.datasets.MNIST(root='./mnist/', train=True, transform=torchvision.transforms.ToTensor(), download=DOWNLOAD_MNIST,)
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
torch.cuda.empty_cache( )
# !!!!!!!! Change in here !!!!!!!!! #
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000].cuda()/255. # Tensor on GPU
test_y = test_data.test_labels[:2000].cuda()
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2,),
nn.ReLU(), nn.MaxPool2d(kernel_size=2),)
self.conv2 = nn.Sequential(nn.Conv2d(16, 32, 5, 1, 2), nn.ReLU(), nn.MaxPool2d(2),)
self.out = nn.Linear(32 * 7 * 7, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1)
output = self.out(x)
return output
cnn = CNN()
# !!!!!!!! Change in here !!!!!!!!! #
cnn.cuda() # Moves all model parameters and buffers to the GPU.
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
loss_func = nn.CrossEntropyLoss()
for epoch in range(EPOCH):
for step, (x, y) in enumerate(train_loader):
# !!!!!!!! Change in here !!!!!!!!! #
b_x = x.cuda() # Tensor on GPU
b_y = y.cuda() # Tensor on GPU
output = cnn(b_x)
loss = loss_func(output, b_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % 200 == 0:
# if hasattr(torch.cuda,'empty_cache'):
# torch.cuda.empty_cache()
with torch.no_grad():
test_output = cnn(test_x)
# if hasattr(torch.cuda,'empty_cache'):
# torch.cuda.empty_cache()
# !!!!!!!! Change in here !!!!!!!!! #
pred_y = torch.max(test_output, 1)[1].cuda().data # move the computation in GPU
accuracy = torch.sum(pred_y == test_y).type(torch.FloatTensor) / test_y.size(0)
print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.cpu().numpy(), '| test accuracy: %.2f' % accuracy)
test_output = cnn(test_x[:10])
# !!!!!!!! Change in here !!!!!!!!! #
pred_y = torch.max(test_output, 1)[1].cuda().data # move the computation in GPU
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')