这题一开始没注意到d的范围,所以没做出来。
这里我们可以想到的是,我们对询问反向涂色,那么对于已经涂过的点的颜色就是最终颜色,那么就减少了很多重复的不必要操作。
然后因为d最大只有10,所以我们维护每个点已经涂到过的最远距离之后,暴搜染色的复杂度就最大为10 * m左右。(即d从0开始一直+1)
#include<bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int,int> pii; const int N = 1e5 + 5; const int M = 5e5 + 5; const LL Mod = 1e9 + 7; #define pi acos(-1) #define INF 1e18 + 5 #define dbg(ax) cout << "now this num is " << ax << endl; namespace FASTIO{ inline LL read(){ LL x = 0,f = 1;char c = getchar(); while(c < ‘0‘ || c > ‘9‘){if(c == ‘-‘) f = -1;c = getchar();} while(c >= ‘0‘ && c <= ‘9‘){x = (x<<1)+(x<<3)+(c^48);c = getchar();} return x*f; } } using namespace FASTIO; int n,m,ans[N],mx[N]; vector<int> G[N]; struct Node{ int v,d,c; }p[N]; vector<int> vec[N]; void dfs(int u,int fa,int d,int c) { if(d == -1 || mx[u] >= d) return ; if(ans[u] == -1) ans[u] = c; mx[u] = d; for(auto v : G[u]) { if(v == fa) continue; dfs(v,u,d - 1,c); } } int main() { n = read(),m = read(); while(m--) { int x,y;x = read(),y = read(); G[x].push_back(y); G[y].push_back(x); } int q;q = read(); for(int i = 1;i <= q;++i) p[i].v = read(),p[i].d = read(),p[i].c = read(); for(int i = 1;i <= n;++i) mx[i] = -1,ans[i] = -1; for(int i = q;i >= 1;--i) { if(p[i].d <= mx[p[i].v]) continue; dfs(p[i].v,0,p[i].d,p[i].c); } for(int i = 1;i <= n;++i) if(ans[i] == -1) ans[i] = 0; for(int i = 1;i <= n;++i) printf("%d\n",ans[i]); system("pause"); return 0; }