前言:
guava提供的eventbus可以很方便的处理一对多的事件问题, 最近正好使用到了,做个小结,使用的demo网上已经很多了,不再赘述,本文主要是源码分析+使用注意点+新老版本eventbus实现方式对比
一.原理
将定义的hander注册到eventbus中,eventbus遍历该handler及其父类中含有@subscribe注解的方法,封装成subscriber对象,一个event会对应多个方法,Map<EventType.class,List<Subscriber>>,但既然是guava出品,这种情况下一定会用自己家的MultiMap了,接收到event后根据类型匹配对应的subscriber去执行,接下来从源码角度探究下
二.源码分析
主要分析注册与分发处理,会贴相关的源码的注释(guava版本github 2021 1月版本),方便你阅读
1.注册流程
分析之前我们先简要拓展下关于guava cache的用法,compute if absent,不存在则计算,对应getOrLoad方法(暴露给用户的是get()),有则直接返回,
注册流程抓住一个关键点即可,即一个subscriber对应一个被@subscriber标记的method,为了方便阅读,我把代码贴到一起
1 /** Registers all subscriber methods on the given listener object. */ 2 void register(Object listener) { 3 // key-eventType.class value-List<Subscriber>,一个subscriber对应一个方法 4 Multimap<Class<?>, Subscriber> listenerMethods = findAllSubscribers(listener); 5 6 for (Entry<Class<?>, Collection<Subscriber>> entry : listenerMethods.asMap().entrySet()) { 7 Class<?> eventType = entry.getKey(); 8 Collection<Subscriber> eventMethodsInListener = entry.getValue(); 9 // 并发读写 10 CopyOnWriteArraySet<Subscriber> eventSubscribers = subscribers.get(eventType); 11 12 if (eventSubscribers == null) { 13 CopyOnWriteArraySet<Subscriber> newSet = new CopyOnWriteArraySet<>(); 14 // eventType.class不存在时才put,concurrenthashmap的putIfAbsent() 15 // 有可能为null,用newSet替换 16 eventSubscribers = 17 MoreObjects.firstNonNull(subscribers.putIfAbsent(eventType, newSet), newSet); 18 } 19 // 添加 20 eventSubscribers.addAll(eventMethodsInListener); 21 } 22 } 23 24 25 /** 26 * Returns all subscribers for the given listener grouped by the type of event they subscribe to. 27 */ 28 private Multimap<Class<?>, Subscriber> findAllSubscribers(Object listener) { 29 Multimap<Class<?>, Subscriber> methodsInListener = HashMultimap.create(); 30 Class<?> clazz = listener.getClass(); 31 for (Method method : getAnnotatedMethods(clazz)) { 32 Class<?>[] parameterTypes = method.getParameterTypes(); 33 Class<?> eventType = parameterTypes[0]; 34 // 创建subscriber时,如果未添加@AllowConcurrentEvents注解则生成同步的subscriber 35 methodsInListener.put(eventType, Subscriber.create(bus, listener, method)); 36 } 37 return methodsInListener; 38 } 39 40 private static ImmutableList<Method> getAnnotatedMethods(Class<?> clazz) { 41 try { 42 return subscriberMethodsCache.getUnchecked(clazz); 43 } catch (UncheckedExecutionException e) { 44 throwIfUnchecked(e.getCause()); 45 throw e; 46 } 47 } 48 49 // 映射关系缓存,getOrload 50 private static final LoadingCache<Class<?>, ImmutableList<Method>> subscriberMethodsCache = 51 CacheBuilder.newBuilder() 52 .weakKeys() 53 .build( 54 new CacheLoader<Class<?>, ImmutableList<Method>>() { 55 @Override 56 public ImmutableList<Method> load(Class<?> concreteClass) throws Exception { 57 return getAnnotatedMethodsNotCached(concreteClass); 58 } 59 }); 60 61 private static ImmutableList<Method> getAnnotatedMethodsNotCached(Class<?> clazz) { 62 // 获得listener的所有父类及自身的class(包括接口) 63 Set<? extends Class<?>> supertypes = TypeToken.of(clazz).getTypes().rawTypes(); 64 Map<MethodIdentifier, Method> identifiers = Maps.newHashMap(); 65 for (Class<?> supertype : supertypes) { 66 for (Method method : supertype.getDeclaredMethods()) { 67 if (method.isAnnotationPresent(Subscribe.class) && !method.isSynthetic()) { 68 // TODO(cgdecker): Should check for a generic parameter type and error out 69 Class<?>[] parameterTypes = method.getParameterTypes(); 70 // 参数校验,@subscribe注解的方法有且有能有一个非原始类型参数 71 checkArgument( 72 parameterTypes.length == 1, 73 "Method %s has @Subscribe annotation but has %s parameters. " 74 + "Subscriber methods must have exactly 1 parameter.", 75 method, 76 parameterTypes.length); 77 78 checkArgument( 79 !parameterTypes[0].isPrimitive(), 80 "@Subscribe method %s's parameter is %s. " 81 + "Subscriber methods cannot accept primitives. " 82 + "Consider changing the parameter to %s.", 83 method, 84 parameterTypes[0].getName(), 85 Primitives.wrap(parameterTypes[0]).getSimpleName()); 86 87 MethodIdentifier ident = new MethodIdentifier(method); 88 // 重写的方法只放入一次 89 if (!identifiers.containsKey(ident)) { 90 identifiers.put(ident, method); 91 } 92 } 93 } 94 } 95 return ImmutableList.copyOf(identifiers.values()); 96 } 97 98 99 // 创建subscriber 100 static Subscriber create(EventBus bus, Object listener, Method method) { 101 return isDeclaredThreadSafe(method) 102 ? new Subscriber(bus, listener, method) 103 : new SynchronizedSubscriber(bus, listener, method); 104 } 105 106 @VisibleForTesting 107 static final class SynchronizedSubscriber extends Subscriber { 108 109 private SynchronizedSubscriber(EventBus bus, Object target, Method method) { 110 super(bus, target, method); 111 } 112 113 @Override 114 void invokeSubscriberMethod(Object event) throws InvocationTargetException { 115 synchronized (this) { 116 super.invokeSubscriberMethod(event); 117 } 118 } 119 }
值得注意的是subscriber的生成,即便你使用了AsyncEventbus,却没有在处理方法上声明@AllowConcurrentEvents,那么在处理event时仍然是同步执行的,注册流程并发安全问题请看第三部分
2.分发流程
先看下如何获得event对应的subscriber
1 public void post(Object event) { 2 Iterator<Subscriber> eventSubscribers = subscribers.getSubscribers(event); 3 if (eventSubscribers.hasNext()) { 4 // 分发,dispatcher有三种实现,ImmediateDispatcher(同步处理event,深度优先) 5 // LegacyAsyncDispatcher(异步处理event) 6 // PerThreadQueuedDispatcher(默认,同步调用,广度优先) 内置队列,可以保证同一线程内的event的顺序 7 dispatcher.dispatch(event, eventSubscribers); 8 } else if (!(event instanceof DeadEvent)) { 9 // the event had no subscribers and was not itself a DeadEvent 10 // 把所有没有被订阅的event包装成deadevent,用户可以自己定义处理deadevent的方法,作为兜底 11 post(new DeadEvent(this, event)); 12 } 13 } 14 15 Iterator<Subscriber> getSubscribers(Object event) { 16 //获得event的所有父类及自身的class(包括接口),从获取subscriber的流程来看,post一个event 17 // 时,除了调用该event的处理方法也会调用该event父类的处理方法 18 ImmutableSet<Class<?>> eventTypes = flattenHierarchy(event.getClass()); 19 20 List<Iterator<Subscriber>> subscriberIterators = 21 Lists.newArrayListWithCapacity(eventTypes.size()); 22 23 for (Class<?> eventType : eventTypes) { 24 CopyOnWriteArraySet<Subscriber> eventSubscribers = subscribers.get(eventType); 25 if (eventSubscribers != null) { 26 // eager no-copy snapshot 27 subscriberIterators.add(eventSubscribers.iterator()); 28 } 29 } 30 // 类似flatmap,扁平化 31 return Iterators.concat(subscriberIterators.iterator()); 32 } 33 34 @VisibleForTesting 35 static ImmutableSet<Class<?>> flattenHierarchy(Class<?> concreteClass) { 36 try { 37 return flattenHierarchyCache.getUnchecked(concreteClass); 38 } catch (UncheckedExecutionException e) { 39 throw Throwables.propagate(e.getCause()); 40 } 41 } 42 43 private static final LoadingCache<Class<?>, ImmutableSet<Class<?>>> flattenHierarchyCache = 44 CacheBuilder.newBuilder() 45 .weakKeys() 46 .build( 47 new CacheLoader<Class<?>, ImmutableSet<Class<?>>>() { 48 // <Class<?>> is actually needed to compile 49 @SuppressWarnings("RedundantTypeArguments") 50 @Override 51 public ImmutableSet<Class<?>> load(Class<?> concreteClass) { 52 return ImmutableSet.<Class<?>>copyOf( 53 TypeToken.of(concreteClass).getTypes().rawTypes()); 54 } 55 });
从代码可以看出,先对该event查询上级,最后把所有event对应的subscriber返回,因此触发一个event时,其父event的subscriber也会被调用
接下来看下post,流程eventbus有三种dispatcher(ImmediaDispatcher,PerThreadDispatcher,LegacyAsyncDispatcher)eventbus使用的是PerThreadDispatcher,AsyncEventBus使用LegacyAsyncDispatcher
①ImmediaDispatcher
从名字中的Immedia"即时"就能看出这个dispatcher收到event后会立即处理,不会进行异步处理
代码如下:
从图中可以看出ImmediaDispatcher是针对每个event,调用其全部的subscriber进行处理,即尽可能多的调用subscriber,所以是广度优先,这个dispatcher目前未被使用,了解即可
②PerThreadQueueDispatcher(默认的dispatcher)
同样从名称可以看出这种dispatcher是一个thread一个queue,那我们可以猜测内部有可能用了ThreadLocal,既然用了队列,说明想要起到一个缓冲event处理的过程
队列的缓冲功能使得dispatcher有能力吞吐更高的event,因此是一种深度优先策略,此外每线程每队列的方式保证了event处理过程是对于每个线程而言是有序的,同样是广度优先,对
每一个event都分发到相关的subscriber进行处理,除此之外还有一个值得称道的点,即Dispatching变量的使用,规避了递归产生的死循环问题
1 private static final class PerThreadQueuedDispatcher extends Dispatcher { 2 3 // This dispatcher matches the original dispatch behavior of EventBus. 4 5 /** Per-thread queue of events to dispatch. */ 6 private final ThreadLocal<Queue<Event>> queue = 7 new ThreadLocal<Queue<Event>>() { 8 @Override 9 protected Queue<Event> initialValue() { 10 return Queues.newArrayDeque(); 11 } 12 }; 13 14 /** Per-thread dispatch state, used to avoid reentrant event dispatching. */ 15 private final ThreadLocal<Boolean> dispatching = 16 new ThreadLocal<Boolean>() { 17 @Override 18 protected Boolean initialValue() { 19 return false; 20 } 21 }; 22 23 @Override 24 void dispatch(Object event, Iterator<Subscriber> subscribers) { 25 checkNotNull(event); 26 checkNotNull(subscribers); 27 // 如果只从代码来看,PerThreadQueuedDispatcher的dispatch方法始终 28 // 是单线程调用,并不需要ThreadLocal,但从拓展的角度看,当用户自定义xxeventbus自己实现分发逻辑时,PerThreadQueuedDispatcher实现了线程安全的dispatch 29 //因为eventbus有可能会被多个线程调用,从框架的角度看,无论用户是否多线程调用,都应该要保证线程安全 30 // 引用issue 3530中 https://github.com/google/guava/issues/3530 的一个回答 if multiple threads are dispatching to this dispatcher, they will read different values for queueForThread and dispatching. 31 Queue<Event> queueForThread = queue.get(); 32 queueForThread.offer(new Event(event, subscribers)); 33 34 // 如果未开始分发事件则进行处理,解决subscriber递归调用post产生的死循环 35 if (!dispatching.get()) { 36 dispatching.set(true); 37 try { 38 Event nextEvent; 39 // 对每一个event,分发到相关的subscribers中 40 while ((nextEvent = queueForThread.poll()) != null) { 41 while (nextEvent.subscribers.hasNext()) { 42 nextEvent.subscribers.next().dispatchEvent(nextEvent.event); 43 } 44 } 45 } finally { 46 dispatching.remove(); 47 queue.remove(); 48 } 49 } 50 }
接下来看下刚刚说的dispatching的妙用demo
在guava-test下建立一个新的目录方便我们修改源码后进行测试,测试代码如下
Listener
1 /** 2 * @author tele 3 * @Description 4 * @create 2020-11-23 5 */ 6 public class Listener { 7 8 private final EventBus eventBus; 9 10 public Listener(EventBus eventBus) { 11 this.eventBus = eventBus; 12 } 13 14 @Subscribe 15 public void record(String s) { 16 eventBus.post(s); 17 System.out.println("receive:"+ s); 18 } 19 }
Producer
1 /** 2 * @author tele 3 * @Description 4 * @create 2020-11-23 5 */ 6 public class Producer { 7 8 public String produce() { 9 return "hello"; 10 } 11 }
Main
1 /** 2 * @author tele 3 * @Description 4 * @create 2020-11-23 5 */ 6 public class Main { 7 8 public static void main(String[] args) { 9 EventBus eventBus = new EventBus(); 10 Listener listener = new Listener(eventBus); 11 Producer producer = new Producer(); 12 eventBus.register(listener); 13 String produce = producer.produce(); 14 eventBus.post(produce); 15 } 16 17 }
代码很简单,问题在于Listener递归调用了post方法,按照代码示意运行后会栈溢出(队列中event堆积),receive:hello永远不会打印,可事实真的如此吗?
很奇怪是吗,并没有产生堆栈溢出的问题,反而是不停的输出receive:hello,接下来我们修改下PerThreadDispatcher的代码,将dispatching变量注释掉
再执行下demo
果然溢出了,关键点就在于dispatching变量对于同一线程的递归分发进行了处理,已经处理过就不再次进行分发,这样我们的递归调用不停的产生的event得以被处理
③LegacyAsyncDispatcher
看名字挺奇怪的,但有async字样,所以是异步的dispatcher,LegacyAsyncDispacther是AsyncEventBus的专用dispatcher,由于将event对应的subscriber拆分后入队,多线程情况下无法保证event入队顺序,也就无法保证subscriber的调用顺序,但这样处理实现了深度优先,即尽可能多的调用不同的event的subscriber,与PerThreadDispatcher相比代码难度小了不少,由于AsyncEventBus的初始化需要传入线程池参数,所以AsyncEventBus实现了真正的异步处理
1 /** Implementation of a {@link #legacyAsync()} dispatcher. */ 2 private static final class LegacyAsyncDispatcher extends Dispatcher { 3 4 // This dispatcher matches the original dispatch behavior of AsyncEventBus. 5 // 6 // We can't really make any guarantees about the overall dispatch order for this dispatcher in 7 // a multithreaded environment for a couple reasons: 8 // 9 // 1. Subscribers to events posted on different threads can be interleaved with each other 10 // freely. (A event on one thread, B event on another could yield any of 11 // [a1, a2, a3, b1, b2], [a1, b2, a2, a3, b2], [a1, b2, b3, a2, a3], etc.) 12 // 2. It's possible for subscribers to actually be dispatched to in a different order than they 13 // were added to the queue. It's easily possible for one thread to take the head of the 14 // queue, immediately followed by another thread taking the next element in the queue. That 15 // second thread can then dispatch to the subscriber it took before the first thread does. 16 // 17 // All this makes me really wonder if there's any value in queueing here at all. A dispatcher 18 // that simply loops through the subscribers and dispatches the event to each would actually 19 // probably provide a stronger order guarantee, though that order would obviously be different 20 // in some cases. 21 22 /** Global event queue. */ 23 private final ConcurrentLinkedQueue<EventWithSubscriber> queue = 24 Queues.newConcurrentLinkedQueue(); 25 26 @Override 27 void dispatch(Object event, Iterator<Subscriber> subscribers) { 28 checkNotNull(event); 29 // 拆分后入队 30 while (subscribers.hasNext()) { 31 queue.add(new EventWithSubscriber(event, subscribers.next())); 32 } 33 34 EventWithSubscriber e; 35 while ((e = queue.poll()) != null) { 36 e.subscriber.dispatchEvent(e.event); 37 } 38 } 39 40 private static final class EventWithSubscriber { 41 private final Object event; 42 private final Subscriber subscriber; 43 44 private EventWithSubscriber(Object event, Subscriber subscriber) { 45 this.event = event; 46 this.subscriber = subscriber; 47 } 48 } 49 }
注意点:
1.eventbus默认使用的线程池MoreExecutors.directExecutor(),其execute方法是直接调用传入的runnable的run方法,是非异步的
2.使用AsyncEventBus时,请在对应的方法上添加@AllowConcurrenEvents
三.从并发安全的角度出发,对比下新老版本的注册流程
本部分为补充内容,重点探讨新老版本的注册并发安全问题,可略过
从20.0开始,event bus的注册程变成了上面分析的,那么之前的版本是如何实现的呢,一起来分析下
先切到16.0 的tag,注册代码如下
显然是使用了读写锁,不加锁,eventType会相互覆盖(HashMultiMap是非线程安全的),先给eventbus加个getSubscriberByType(),记得修改下EventSubscriber的修饰符为public,然后做个多线程的测试
1 /** 2 * @author tele 3 * @Description 4 * @create 2021-01-24 5 */ 6 public class ListenerA { 7 8 @Subscribe 9 public void handle(String msg) { 10 System.out.println("ListenerA:" + msg); 11 } 12 13 } 14 15 /** 16 * @author tele 17 * @Description 18 * @create 2021-01-24 19 */ 20 public class ListenerB { 21 22 @Subscribe 23 public void handle(String msg) { 24 System.out.println("ListenerB:" + msg); 25 } 26 27 } 28 29 /** 30 * @author tele 31 * @Description 32 * @create 2021-01-24 33 */ 34 public class Main { 35 36 37 public static void main(String[] args) throws InterruptedException { 38 39 final EventBus eventBus = new EventBus(); 40 final ListenerA a = new ListenerA(); 41 ListenerB b = new ListenerB(); 42 CountDownLatch countDownLatch = new CountDownLatch(6); 43 44 Runnable r1 = ()-> { 45 eventBus.register(a); 46 countDownLatch.countDown(); 47 }; 48 Thread t1 = new Thread(r1); 49 Thread t2 = new Thread(r1); 50 Thread t3 = new Thread(r1); 51 52 Runnable r2 = ()-> { 53 eventBus.register(b); 54 countDownLatch.countDown(); 55 }; 56 Thread t4 = new Thread(r2); 57 Thread t5 = new Thread(r2); 58 Thread t6 = new Thread(r2); 59 60 t1.start(); 61 t2.start(); 62 t3.start(); 63 t4.start(); 64 t5.start(); 65 t6.start(); 66 countDownLatch.await(); 67 SetMultimap<Class<?>, EventSubscriber> subscribersByType = eventBus.getSubscribersByType(); 68 subscribersByType.asMap().forEach((k,v)-> { 69 System.out.println("key:" + k); 70 v.forEach(System.out::println); 71 }); 72 } 73 }
输出结果如下:
ok,没啥问题,接下来再修改下源码把使用读写锁的两行代码注释掉,再执行下代码
输出结果如下:
显然,ListenerA的注册结果被覆盖了,这里简要说下原因,subscribersByType,k-v结构简略表示为 K-event.class ,value-Set<Listener.class>,我们知道java中的hashset不重复的特性是基于hashmap实现的.同样的,这里的SetMultiMap实际是用的HashMultiMap,翻翻源码就知道了,内部存储数据的容器是hashmap,那么这个问题就转换成了hashmap的线程安全问题了,hashmap多线程put hash相同的元素会产生丢失问题,多线程下同时put get有可能导致get 出null.了解到这我们就知道为什么要加锁了,使用读写锁的版本一直持续到19.0,从20.0开始从开始使用并发容器代替读写锁,因为对于eventbus而言始终是读远大于写,基于cow机制实现的CopyOnWriteArrayList在读写同时进行时通过延迟更新的策略不阻塞线程,对于event的处理 而言是可以接受的,因为本次event在post时没有分发到对应的subsriber,下次同类型的event触发就ok了,事实上,这种场景极少,因为从使用经历来看,一般是项目启动时就注册,分发都是需要处理逻辑时才会触发,不阻塞与每次都需要加解读锁相比,显然不阻塞的性能更好了.老版本的分发流程不再赘述,因为确实没啥好分析的了,如果你能看懂上面分析的新版本的dispatcher,当你看老版本的时候就会感觉很简单了
四.优势与缺陷
1.进程内使用,无法实现跨进程处理,需要跨进程传递消息,还是老老实实的用消息队列吧
2.和redis一样基于内存,天然的不可靠,redis好歹还有aof和rdb,可event bus没有任何持久化机制
3.个人对新版的Subscriber实现方式有点看法,没必须要把线程池参数传递给Subscriber,因为Subscriber只是被执行者,16.0的版本线程池参数是AsyncEventBus持有
六.参考文档
1.github https://github.com/google/guava/wiki/EventBusExplained#for-producers