How many integers can you find
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2 2 3
Sample Output
7
题意:
给你m个数的集合,给你一个n问你小于n并且是这m个数里面的数的倍数有多少
题解:
dfs容斥原理
奇数偶数加减法
#include<bits/stdc++.h>
using namespace std;
const int N = 3e6+, M = 1e6+, mod = 1e9+,inf = 1e9+; typedef long long ll; ll ans;
int x,a[N],n,m;
ll gcd(ll a,ll b) {return b==?a:gcd(b,a%b);}
void dfs(int i,int num,ll tmp) {
if(i>=m) {
if(num==) ans=;
else {
if(num&) ans = (ans+n/tmp);
else ans = ans - n/tmp;
}
return ;
}
dfs(i+,num,tmp);
dfs(i+,num+,tmp*a[i]/gcd(tmp,a[i]));
}
int main() {
while(scanf("%d%d",&n,&m)!=EOF) {
int k = ;
n--;
for(int i=;i<=m;i++) {
scanf("%d",&x);
if(x) a[k++] = x;
}
m = k;
ans = ;
dfs(,,);
printf("%I64d\n",ans);
}
return ;
}