1.完全学ipmark的样子,在sk_buff和nf_conn里面均加一个mark字段,分别代表数据包的mark和数据流的mark
作罢的原因:需要重新编译内核,而我不希望为了一个小小的功能重新编译内核,背后的思想是我比较崇尚热插拔。
2.不动sk_buff,只在nf_conn里面加一个字段,skb仅仅作为一个中转,在iptables的target通过skb找到nf_conn,设置nf_conn的info字段
作罢的原因:Linux严格控制内核模块的版本,模块依赖的头文件一点都不能动,如果我改变了net/netfilter/nf_conntrack.h,那么新编译的所有的依赖nf_conntrack.ko的模块中的符号CRC码都会变化从而无法通过内核的验证,我不得不学Netfilter的一个项目xtables-addons中compat-xtables的样子,把所有的会改变CRC码的导出函数全部再重新实现一遍,然而,天啊,我起初的想法太天真了,没完美了的循环依赖,以至于我想骂两句:
第一:
ip_conntrack为何不让人扩展?虽然它有一个extend机制,但是MD简直就是自说自话,全部都是预定义好的,就下面的枚举里面的几类:
enum nf_ct_ext_id { NF_CT_EXT_HELPER, NF_CT_EXT_NAT, NF_CT_EXT_ACCT, NF_CT_EXT_ECACHE, NF_CT_EXT_NUM, };
你加一个新的类型,就会改变内核头文件,既然不让扩展,为何还叫extend呢?你干脆直接放进nf_conn就可以了,搞成extend感觉上好像多么的模块化,多么的可插拔,实际上你能扩展的东西只能是逻辑,而不能是数据结构!
第二:
Linux为何把extend写的那么死呢?当我突然感到这是合理的时候,我就三缄其口了,后面我会说到,数据结构需要可以自解释,即自己解释自己。虽然人可以看到一个结构体马上说出它的含义,但是程序却很难将一堆数据对应到一个结构体!自解释,如果不知道自解释,那就说明你根本就TM就不懂计算机!虽然你可能很精通编程...
思路
既然不能扩展nf_conn的extend,也不能在nf_conn本身加新的字段,那么只能重新编译内核了,在重新编译内核的时候,加入且仅仅加入一个extend类型,作为一个中间层,在这个extend中实现一个可插拔的注册机制,以后再想加入新的扩展就可以直接在这个extend的机制上进行了。然而,我还是不想编译内核,这是一个思想!我希望做最小的改动。万事都难不倒偏执的人,我采用了一个常规却不常用的方法,那就是默默地扩展结构体的大小,这也正是在《JAVA编程思想》里面学到的一个思想。思想
这其实是一种OO的思想,找到一个基类,然后扩展它,在扩展继承的过程中实现你自己的逻辑,我扩展的是内核的nf_conn_counter结构体:struct nf_conn_counter { u_int64_t packets; u_int64_t bytes; };我希望它成为下面的样子:
struct nf_conn_counter { u_int64_t packets; u_int64_t bytes; unsigned char *info; };但是我又不能改变结构体的定义,所以我采用下面等价的办法:
struct conn_info_extends_nf_conn_counter { struct nf_conn_counter base; char *info; }info是最关键的。我需要做的仅仅就是在为nf_conn_counter分配空间的时候为其多加一个指针的空间即可,至于这个指针指向什么,自有调用者解释。在我的需求中,它可能就是一个字符串,存在info信息。acct_extend原始定义为(之所以选择对acct开刀,是因为它足够简单,在字面上里面,其表示统计信息,加入一个info也无可厚非):
static struct nf_ct_ext_type acct_extend __read_mostly = { .len = sizeof(struct nf_conn_counter[IP_CT_DIR_MAX]), .align = __alignof__(struct nf_conn_counter[IP_CT_DIR_MAX]), .id = NF_CT_EXT_ACCT, };
将其修改为:
struct info_compat { struct nf_conn_counter nc[IP_CT_DIR_MAX]; unsigned char * info; }; static struct nf_ct_ext_type acct_extend __read_mostly = { .len = sizeof(struct info_compat), .align = __alignof__(struct info_compat), .id = NF_CT_EXT_ACCT, };
到此为止,我没有修改任何内核头文件,接下来我来写一个测试模块来进行测试:
#include <linux/ip.h> #include <linux/module.h> #include <linux/skbuff.h> #include <linux/version.h> #include <net/netfilter/nf_conntrack.h> #include <net/netfilter/nf_conntrack_acct.h> MODULE_AUTHOR("xtt"); MODULE_DESCRIPTION("gll"); MODULE_LICENSE("GPL"); MODULE_ALIAS("XTT and GLL"); struct nf_info { struct nf_conn_counter nc[IP_CT_DIR_MAX]; char *info; }; static unsigned int ipv4_conntrack_info (unsigned int hooknum, struct sk_buff *skb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { u32 addr = ip_hdr(skb)->daddr; // 测试我家的路由器的地址192.168.1.1 if (addr == 0x0101a8c0) { struct nf_conn *ct; enum ip_conntrack_info ctinfo; struct nf_conn_counter *acct; struct nf_info *info; unsigned char *cn = NULL; ct = nf_ct_get(skb, &ctinfo); if (!ct || ct == &nf_conntrack_untracked) return NF_ACCEPT; acct = nf_conn_acct_find(ct); if (acct) { info = (struct nf_info *)acct; info->info = (unsigned char*) kzalloc(32, GFP_ATOMIC); if (!info->info) { return NF_ACCEPT; } // 测试将1234567890作为字符串设置到conntrack memcpy(info->info, "1234567890", min(32, strlen("1234567890"))); } } return NF_ACCEPT; } static struct nf_hook_ops ipv4_conn_info __read_mostly = { .hook = ipv4_conntrack_info, .owner = THIS_MODULE, .pf = NFPROTO_IPV4, .hooknum = NF_INET_LOCAL_OUT, .priority = NF_IP_PRI_CONNTRACK + 1, }; static int __init test_info_init(void) { int err; err = nf_register_hook(&ipv4_conn_info); if (err) { return err; } return err; } static void __exit test_info_exit(void) { nf_unregister_hook(&ipv4_conn_info); } module_init(test_info_init); module_exit(test_info_exit);
到底成功了没有呢?我需要将这一切展示在/proc/net/nf_conntrack里面,但是由于我使用了acct机制,所以我需要打开内核的acct选项:
sysctl -w net.netfilter.nf_conntrack_acct=1
真正修改的地方在/net/netfilter/nf_conntrack_standalone.c的ct_seq_show函数:
if (seq_printf(s, "use=%u ", atomic_read(&ct->ct_general.use))) goto release; { struct nf_info { struct nf_conn_counter acct[2]; char *info; }; struct nf_conn_counter *acct; struct nf_info *info; acct = nf_conn_acct_find(ct); if (acct) { info = (struct nf_info *)acct; if (info->info) { if (seq_printf(s, "info=%s\n", info->info)) { goto release; } } } }
在测试的时候,/proc/net/nf_conntrack中拥有了一个信息:
ipv4 2 tcp 6 431985 ESTABLISHED src=192.168.1.109 dst=192.168.1.1 sport=33591 dport=50 packets=2 bytes=112 src=192.168.1.1dst=192.168.1.109 sport=50 dport=33591 packets=1 bytes=60 [ASSURED] mark=0 zone=0 use=2 info=1234567890
这就说明这种方法是可行的,改动的地方并不多,关键是你要找到一个危险性最少的开刀部位,然后按照OO的思想扩展它,给它它所有没有的行为。曾经,我对nat的extend进行了偷梁换柱,但那是不对的,正确的做法是在原有结构体的地址后面紧跟着进行扩展,类似0长度数组那种。
我需要解释一下程序的自解释了。Linux在实现nf_conntrack的extend的时候,为何将类型数值以及定义的顺序用一个枚举写死呢?换句话说那就是为何不允许用户随意定义extend呢?答案是:那很难!Why?试想,如果我把一个结构体给了一个extend type。请问我把这个type存在哪?除了事先自定义一个type序列,仅存的办法就是把这个type序列存在extend本身了,这就遇到了一个循环定义的问题,我们对此是没有办法的,一个程序很难看到一对数字后,然后就可以把它们看作一个结构体,起码的字段分界就无法解决。虽然可以用OO的思想之外,剩下的解决方案就是寻求一种自解释的数据格式。我能想到的就是ASN.1了。实际上,ASN.1也是一种事先定义的类型格式序列,只不过该序列是经过标准化的而已,一个ASN.1序列是不需要解释的,它可以自己解释自己,需要的仅仅是文档。一个ASN.1序列可以将一段数据解释为一个结构体,或者反过来也可以。OpenSSL里面的d2i/i2d就是做这个的。难道不是吗?
清明时节雨纷纷,就这样在没有雨的一整天过去了,没有从《JAVA编程思想》中看到什么思想,依然没有感悟到JAVA的思想,依然没有。