【bzoj 2159】Crash 的文明世界

Description

Crash小朋友最近迷上了一款游戏——文明5(Civilization V)。在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家。现在Crash已经拥有了一个N个城市的国家,这些城市之间通过道路相连。由于建设道路是有花费的,因此Crash只修建了N-1条道路连接这些城市,不过可以保证任意两个城市都有路径相通。在游戏中,Crash需要选择一个城市作为他的国家的首都,选择首都需要考虑很多指标,有一个指标是这样的:$S(i)=\sum _{j=1}^Ndist(i,j)^k$。其中S(i)表示第i 个城市的指标值,dist(i, j)表示第i个城市到第j个城市需要经过的道路条数的最小值,k为一个常数且为正整数。因此Crash交给你一个简单的任务:给出城市之间的道路,对于每个城市,输出这个城市的指标值,由于指标值可能会很大,所以你只需要输出这个数 mod 10007 的值。

Input

输入的第一行包括两个正整数N和k。下面有N-1行,每行两个正整数u、v (1 ≤ u, v ≤ N),表示第u个城市和第v个城市之间有道路相连。这些道路保证能符合题目的要求。

Output

输出共N行,每行一个正整数,第i行的正整数表示第i个城市的指标值 mod 10007 的值。

用结论来化简式子:$x^n=\sum _{i=1}^n S(n,i)\cdot F(x,i)$

$S(n,i)$为第二类斯特林数,$F(x,i)=\frac{x!}{(x-i)!}$

可得:$$\begin{align*} ans(i)&=\sum _{j=1}^ndist(i,j)^m\\ &=\sum_{j=1}^{n}\sum_{k=1}^{m}S(m,k)\cdot F(dist(i,j),k)\\ &=\sum_{k=1}^{m}S(m,k)\sum_{j=1}^{n} F(dist(i,j),k)\\ &=\sum_{k=1}^{m}S(m,k)\cdot k!\cdot \sum_{j=1}^{n} C(dist(i,j),k) \end{align*}$$

根据组合数递推公式:$C(n,m)=C(n-1,m)+C(n-1,m-1)$ 就可以很方便的对后面的部分进行树形dp了。

具体地,令 $up(x,i)$ 为不在 $x$ 的子树中的部分的贡献,令 $dn(x,i)$ 为 $x$ 的子树的贡献。特别的,$dn(x,0)=1$。

详见代码。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=5e4+;
const int M=;
const int mod=1e4+;
int n,m,u,v,cnt,ans,tmp;
int first[N],fac[M],s[M][M];
int up[N][M],dn[N][M];
struct edge{int to,next;}e[N*];
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void ins(int u,int v){e[++cnt]=(edge){v,first[u]};first[u]=cnt;}
void Mod(int& a,int b){a+=b;if(a>=mod)a-=mod;}
void dfs1(int x,int fa)
{
dn[x][]=;
for(int i=first[x];i;i=e[i].next)
{
int to=e[i].to;
if(to==fa)continue;
dfs1(to,x);
Mod(dn[x][],dn[to][]);
for(int j=;j<=m;j++)
Mod(dn[x][j],(dn[to][j]+dn[to][j-])%mod);
}
}
void dfs2(int x,int fa)
{
if(fa!=-)
{
up[x][]=n-dn[x][];
for(int i=;i<=m;i++)
{
Mod(up[x][i],(up[fa][i]+up[fa][i-])%mod);
Mod(up[x][i],(dn[fa][i]+dn[fa][i-])%mod);
Mod(up[x][i],(*mod-dn[x][i]-dn[x][i-])%mod);
Mod(up[x][i],(mod-dn[x][i-])%mod);
if(i!=)Mod(up[x][i],(mod-dn[x][i-])%mod);
}
}
for(int i=first[x];i;i=e[i].next)
if(e[i].to!=fa)dfs2(e[i].to,x);
}
int main()
{
int L,now,A,B,Q;
n=read();m=read();L=read();
now=read();A=read();B=read();Q=read();
for(int i=;i<n;i++)
{
now=(now*A+B)%Q;
tmp=i<L?i:L;
u=i-now%tmp;v=i+;
ins(u,v);ins(v,u);
}
// n=read();m=read();
// for(int i=1;i<n;i++)
// {
// u=read();v=read();
// ins(u,v);ins(v,u);
// }
fac[]=s[][]=;
for(int i=;i<=m;i++)
{
fac[i]=fac[i-]*i%mod;
for(int j=;j<=i;j++)
s[i][j]=(s[i-][j]*j+s[i-][j-])%mod;
}
dfs1(,-);dfs2(,-);
for(int i=;i<=n;i++)
{
ans=;
for(int j=;j<=m;j++)
Mod(ans,s[m][j]*fac[j]%mod*(up[i][j]+dn[i][j])%mod);
printf("%d\n",ans);
}
return ;
}
上一篇:uva11536 Smallest Sub-Array


下一篇:DotNetCore 结合 Nginx 将网站部署到阿里云