数据结构与算法——递归-迷宫问题

数据结构与算法——递归-迷宫问题

迷宫问题(回溯),对上图说明:

  • 红色的方块是围墙,是小球不能够走的
  • 白色的方块是小球可以活动的范围
  • 左上角是小球的起点,移动到右下角,就算走出了迷宫

那么在这个场景中,就用到了递归(Recursion),下面使用代码来实现小球走出迷宫的路径。下面用数字矩阵来模拟迷宫,重要的是学习其思想,懂得下次遇到类似的可以灵活运用。

代码实现

如果看一次看不懂,多琢磨几次。

/**
 * 
 * 迷宫问题求解
 * 
 */
public class MiGong {

	public static void main(String[] args) {
		// 先创建一个二维数组,模拟迷宫
		// 地图
		int[][] map = new int[8][7];
		// 使用1 表示墙
		// 上下全部置为1
		for (int i = 0; i < 7; i++) {
			map[0][i] = 1;
			map[7][i] = 1;
		}

		// 左右全部置为1
		for (int i = 0; i < 8; i++) {
			map[i][0] = 1;
			map[i][6] = 1;
		}
		//设置挡板, 1 表示
        /*
         * 1 1 1 1 1 1 1
         * 1 0 0 0 0 0 1
         * 1 0 0 0 0 0 1
         * 1 1 1 0 0 0 1
         * 1 0 0 0 0 0 1
         * 1 0 0 0 0 0 1
         * 1 0 0 0 0 0 1
         * 1 1 1 1 1 1 1
        */
		map[3][1] = 1;
		map[3][2] = 1;
//		map[1][2] = 1;
//		map[2][2] = 1;
        //如果打开上面两个注释,地图就为
        /*
        1 1 1 1 1 1 1 
        1 0 1 0 0 0 1 
        1 0 1 0 0 0 1 
        1 1 1 0 0 0 1 
        1 0 0 0 0 0 1 
        1 0 0 0 0 0 1 
        1 0 0 0 0 0 1 
        1 1 1 1 1 1 1 
        */
        //这个地图是为了体验回溯
		
		// 输出没有开始走的地图
		System.out.println("地图的情况");
		for (int i = 0; i < 8; i++) {
			for (int j = 0; j < 7; j++) {
				System.out.print(map[i][j] + " ");
			}
			System.out.println();
		}
		
		//使用递归回溯给小球找路
		setWay(map, 1, 1);
		//setWay2(map, 1, 1);  //体验不同找路策略走出来的路
		
		//输出新的地图, 小球走过,并标识过的递归
		System.out.println("小球走过,并标识过的 地图的情况");
		for (int i = 0; i < 8; i++) {
			for (int j = 0; j < 7; j++) {
				System.out.print(map[i][j] + " ");
			}
			System.out.println();
		}
		
	}
	
	//使用递归回溯来给小球找路
	//说明
	//1. map 表示地图
	//2. i,j 表示从地图的哪个位置开始出发 (1,1)
	//3. 如果小球能到 map[6][5] 位置(终点),则说明通路找到.
	//4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙  ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通,死路
	//5. 在走迷宫时,需要确定一个策略(方法),也就是当你站在一个点的时候,你从哪一个方向开始探索,这里规定探索的方向为: 下->右->上->左 , 如果该点走不通,再回溯
	/**
	 * 
	 * @param map 表示地图
	 * @param i 从哪个位置开始找
	 * @param j 
	 * @return 如果找到通路,就返回true, 否则返回false
	 */
	public static boolean setWay(int[][] map, int i, int j) {
		if(map[6][5] == 2) { // 通路已经找到ok
			return true;
		} else {
			if(map[i][j] == 0) { //如果当前这个点还没有走过
				//按照策略 下->右->上->左  走
				map[i][j] = 2; // 假定该点是可以走通.
				if(setWay(map, i+1, j)) {//向下走
					return true;
				} else if (setWay(map, i, j+1)) { //向右走
					return true;
				} else if (setWay(map, i-1, j)) { //向上
					return true;
				} else if (setWay(map, i, j-1)){ // 向左走
					return true;
				} else {
					//说明该点是走不通,是死路
					map[i][j] = 3;
					return false;
				}
			} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
				return false;
			}
		}
	}
	
	//修改找路的策略,改成 上->右->下->左,体验不同找路策略走出来的路
	public static boolean setWay2(int[][] map, int i, int j) {
		if(map[6][5] == 2) { // 通路已经找到ok
			return true;
		} else {
			if(map[i][j] == 0) { //如果当前这个点还没有走过
				//按照策略 上->右->下->左
				map[i][j] = 2; // 假定该点是可以走通.
				if(setWay2(map, i-1, j)) {//向上走
					return true;
				} else if (setWay2(map, i, j+1)) { //向右走
					return true;
				} else if (setWay2(map, i+1, j)) { //向下
					return true;
				} else if (setWay2(map, i, j-1)){ // 向左走
					return true;
				} else {
					//说明该点是走不通,是死路
					map[i][j] = 3;
					return false;
				}
			} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
				return false;
			}
		}
	}
}

我们先来看这个测试用例 setWay(map, 1, 1);,就是从左上角开始走,到右下角结束,输出的信息如下

地图的情况
1 1 1 1 1 1 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 1 1 1 1 
小球走过,并标识过的 地图的情况
1 1 1 1 1 1 1 
1 2 0 0 0 0 1 
1 2 2 2 0 0 1 
1 1 1 2 0 0 1 
1 0 0 2 0 0 1 
1 0 0 2 0 0 1 
1 0 0 2 2 2 1 
1 1 1 1 1 1 1

这里看不出来有回溯的痕迹,其实根据我们的这个策略 下 -> 右 -> 上 -> 左,进入方法就打印 map 分布图,你就会发现,他去判断了墙壁的时候,回溯了一小步。但是还是不明显。

下面看一个回溯明显的示例

在设置一面墙map[1][2] = 1;map[2][2] = 1 把路都封死,可以看到下面的输出,一开始把原点标为2(走过了),往下走后把脚下的点标为2(走过了),后发现该点上下左右都走不了就把该点改标为3(死路),然后它又回到上一点,又发现上下左右走不了,又把该点改标为3(死路),最后终止程序。如果看一次看不懂,多琢磨几次。

地图的情况
1 1 1 1 1 1 1 
1 0 1 0 0 0 1 
1 0 1 0 0 0 1 
1 1 1 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 1 1 1 1 
小球走过,并标识过的 地图的情况
1 1 1 1 1 1 1 
1 3 1 0 0 0 1 
1 3 1 0 0 0 1 
1 1 1 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 1 1 1 1 

体验一下不同找路策略,走出来的路

地图的情况
1 1 1 1 1 1 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 1 1 1 1 1 
小球走过,并标识过的 地图的情况
1 1 1 1 1 1 1 
1 2 2 2 2 2 1 
1 0 0 0 0 2 1 
1 1 1 0 0 2 1 
1 0 0 0 0 2 1 
1 0 0 0 0 2 1 
1 0 0 0 0 2 1 
1 1 1 1 1 1 1 

可以看到,不同的找路策略走出来的路也是不同的。

到这里是不是觉得递归真的很奇妙,像是发现新大陆一样,算法就是这么的有趣,虽然在学的过程中会很痛苦,但痛并快乐着。

数据结构与算法——递归-迷宫问题

上一篇:155个JavaScript基础问题(46-55)


下一篇:Android安卓TCP Socket通信实现Demo(附Apk源码)