python数据结构之图论

本篇学习笔记内容为图的各项性质、图的表示方法、图ADT的python实现

图(Graph)

是数据结构和算法学中最强大的框架之一(或许没有之一)。图几乎可以用来表现所有类型的结构或系统,从交通网络到通信网络,从下棋游戏到最优流程,从任务分配到人际交互网络,图都有广阔的用武之地。

我们会把图视为一种由“顶点”组成的抽象网络,网络中的各顶点可以通过“边”实现彼此的连接,表示两顶点有关联。我们要知道最基础最基本的2个概念,顶点(vertex)和边(edge)。

图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。

首先是链表、树与图的对比图:

python数据结构之图论

圆为顶点、线为边

图的术语

python数据结构之图论

图 G 是顶点V 和边 E的集合

两个顶点之间:边

如果顶点 x 和 y 共享边,则它们相邻,或者它们是相邻的

无向图 :无向图中的一个边可以在任一方向上遍历

路径::通过边连接的顶点序列

周期:第一个和最后一个顶点相同的路径

入度::顶点的度数V是以V为端点的边数

出度: 顶点的出度v是以v为起点的边的数量

度:顶点的度数是其入度和出度的总和

图的ADT

数据成员 :

顶点 (vertex)

边缘 (edge)

操作 :

有多少顶点?

有多少个边缘?

添加一个新的顶点

添加一个新的边缘

获取所有邻居? (进出)

U,V连接吗?

反转所有边缘?

获取2跳邻居

图表示法:邻接矩阵

python数据结构之图论

class Vertex:
def __init__(self, node):
self.id = node
# Mark all nodes unvisited
self.visited = False def addNeighbor(self, neighbor, G):
G.addEdge(self.id, neighbor) def getConnections(self, G):
return G.adjMatrix[self.id] def getVertexID(self):
return self.id def setVertexID(self, id):
self.id = id def setVisited(self):
self.visited = True def __str__(self):
return str(self.id) class Graph:
def __init__(self, numVertices=10, directed=False):
self.adjMatrix = [[None] * numVertices for _ in range(numVertices)]
self.numVertices = numVertices
self.vertices = []
self.directed = directed
for i in range(0, numVertices):
newVertex = Vertex(i)
self.vertices.append(newVertex) def addVertex(self, vtx, id): #增加点,这个function没有扩展功能
if 0 <= vtx < self.numVertices:
self.vertices[vtx].setVertexID(id) def getVertex(self, n):
for vertxin in range(0, self.numVertices):
if n == self.vertices[vertxin].getVertexID():
return vertxin
return None def addEdge(self, frm, to, cost=0): #返回全部连线/航线
#print("from",frm, self.getVertex(frm))
#print("to",to, self.getVertex(to))
if self.getVertex(frm) is not None and self.getVertex(to) is not None:
self.adjMatrix[self.getVertex(frm)][self.getVertex(to)] = cost
if not self.directed:
# For directed graph do not add this
self.adjMatrix[self.getVertex(to)][self.getVertex(frm)] = cost def getVertices(self):
vertices = []
for vertxin in range(0, self.numVertices):
vertices.append(self.vertices[vertxin].getVertexID())
return vertices def printMatrix(self):
for u in range(0, self.numVertices):
row = []
for v in range(0, self.numVertices):
row.append(str(self.adjMatrix[u][v]) if self.adjMatrix[u][v] is not None else '/')
print(row) def getEdges(self):
edges = []
for v in range(0, self.numVertices):
for u in range(0, self.numVertices):
if self.adjMatrix[u][v] is not None:
vid = self.vertices[v].getVertexID()
wid = self.vertices[u].getVertexID()
edges.append((vid, wid, self.adjMatrix[u][v]))
return edges def getNeighbors(self, n):
neighbors = []
for vertxin in range(0, self.numVertices):
if n == self.vertices[vertxin].getVertexID():
for neighbor in range(0, self.numVertices):
if (self.adjMatrix[vertxin][neighbor] is not None):
neighbors.append(self.vertices[neighbor].getVertexID())
return neighbors def isConnected(self, u, v):
uidx = self.getVertex(u)
vidx = self.getVertex(v)
return self.adjMatrix[uidx][vidx] is not None def get2Hops(self, u): #转一次机可以到达哪里
neighbors = self.getNeighbors(u)
print(neighbors)
hopset = set()
for v in neighbors:
hops = self.getNeighbors(v)
hopset |= set(hops)
return list(hopset)

图表示法:邻接表

用邻接矩阵来表示,每一行表示一个节点与其他所有节点是否相连,但对于邻接表来说,一行只代表和他相连的节点:

python数据结构之图论

可见邻接表在空间上是更省资源的。 
邻接表适合表示稀疏图,邻接矩阵适合表示稠密图。

import sys
class Vertex:
def __init__(self, node):
self.id = node
self.adjacent = {}
#为所有节点设置距离无穷大
self.distance = sys.maxsize
# 标记未访问的所有节点
self.visited = False
# Predecessor
self.previous = None def addNeighbor(self, neighbor, weight=0):
self.adjacent[neighbor] = weight # returns a list
def getConnections(self): # neighbor keys
return self.adjacent.keys() def getVertexID(self):
return self.id def getWeight(self, neighbor):
return self.adjacent[neighbor] def setDistance(self, dist):
self.distance = dist def getDistance(self):
return self.distance def setPrevious(self, prev):
self.previous = prev def setVisited(self):
self.visited = True def __str__(self):
return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent]) def __lt__(self, other):
return self.distance < other.distance and self.id < other.id class Graph:
def __init__(self, directed=False):
# key is string, vertex id
# value is Vertex
self.vertDictionary = {}
self.numVertices = 0
self.directed = directed def __iter__(self):
return iter(self.vertDictionary.values()) def isDirected(self):
return self.directed def vectexCount(self):
return self.numVertices def addVertex(self, node):
self.numVertices = self.numVertices + 1
newVertex = Vertex(node)
self.vertDictionary[node] = newVertex
return newVertex def getVertex(self, n):
if n in self.vertDictionary:
return self.vertDictionary[n]
else:
return None def addEdge(self, frm, to, cost=0):
if frm not in self.vertDictionary:
self.addVertex(frm)
if to not in self.vertDictionary:
self.addVertex(to) self.vertDictionary[frm].addNeighbor(self.vertDictionary[to], cost)
if not self.directed:
# For directed graph do not add this
self.vertDictionary[to].addNeighbor(self.vertDictionary[frm], cost) def getVertices(self):
return self.vertDictionary.keys() def setPrevious(self, current):
self.previous = current def getPrevious(self, current):
return self.previous def getEdges(self):
edges = []
for key, currentVert in self.vertDictionary.items():
for nbr in currentVert.getConnections():
currentVertID = currentVert.getVertexID()
nbrID = nbr.getVertexID()
edges.append((currentVertID, nbrID, currentVert.getWeight(nbr))) # tuple
return edges def getNeighbors(self, v):
vertex = self.vertDictionary[v]
return vertex.getConnections()

学习资料参考:图论算法初步python算法图论

上一篇:汉字编码:GB2312, GBK, GB18030, Big5


下一篇:SQL Server 2012 Enterprise Edition安装过程详解(包含每一步设置的含义)