重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

参考网址:https://www.cnblogs.com/aoximin/p/13162635.html

前言

简介图:

在数据的逻辑结构D=(KR)中,如果K中结点对于关系R的前趋和后继的个数不加限制,即仅含一种任意的关系,则称这种数据结构为图形结构。

来源百度百科

图形结构是一种比树形结构更复杂的非线性结构。在树形结构中,结点间具有分支层次关系,每一层上的结点只能和上一层中的至多一个结点相关,但可能和下一层的多个结点相关。而在图形结构中,任意两个结点之间都可能相关,即结点之间的邻接关系可以是任意的

然后就是盗图阶段:

重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

后面就是一些基础常识,我找到一个比较全的:

https://www.cnblogs.com/songgj/p/9107797.html

正文

那么就来看一下图的深度遍历和广度遍历吧。

先来定义一个图:

public class Graph
{
private List<String> vertexList; //存储顶点集合
private int[,] edges; //存储图对应的邻结矩阵
private Boolean[] isVisited;// 判断是否访问了
int numOfEdges;
public Graph(int n){
vertexList = new List<string>();
edges = new int[8, 8];
isVisited = new Boolean[8];
}
/// <summary>
/// 增加节点
/// </summary>
/// <param name="vertex">节点</param>
public void addVertex(string vertex)
{
vertexList.Add(vertex);
}
public void insertEdge(int x,int y,int weight)
{
//增加他们的连线 且设置他们的权重
edges[x, y] = 1;
edges[y, x] = 1;
numOfEdges++;
} public void showEdges()
{
for (int i=0;i< isVisited.Length;i++)
{
for (int j = 0; j < isVisited.Length; j++)
{
Console.Write(edges[i,j]+" ");
}
Console.WriteLine();
}
}
}

测试一下:

String[] Vertexs = { "1", "2", "3", "4", "5", "6", "7", "8" };
//创建图对象
Graph graph = new Graph(Vertexs.Count());
//循环的添加顶点
foreach (String vertex in Vertexs)
{
graph.addVertex(vertex);
}
//更新边的关系
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
graph.showEdges();
Console.ReadKey();

结果:

重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

这么看可能不清晰哈,那么我画个图,看一下。

这是下面这张图哈:

重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

深度遍历:

private int getFirstNeighbor(int index)
{
for (int j = 0; j < isVisited.Length; j++)
{
if (edges[index, j] > 0)
{
return j;
}
}
return -1;
}
/// <summary>
/// 通过邻接节点来获取下一个节点
/// </summary>
/// <param name="v1"></param>
/// <param name="v2"></param>
/// <returns></returns>
public int getNextNeighbor(int v1, int v2)
{
for (int j = v2+1; j < isVisited.Length; j++)
{
if (edges[v1, j] > 0)
{
return j;
}
}
return -1;
}
/// <summary>
/// 深度遍历
/// </summary>
/// <param name="i"></param>
public void dfs(int i)
{
//打印遍历的值
Console.Write(vertexList[i]+" ");
isVisited[i] = true;
int w = getFirstNeighbor(i);
while (w != -1)
{
if (!isVisited[w])
{
dfs(w);
}
w = getNextNeighbor(i,w);
}
}

然后调用函数:

 graph.dfs(0);

得到的结果是:

重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

看下广度遍历吧:

//对一个结点进行广度优先遍历的方法
public void bfs(int i)
{
//打印遍历的值
Console.Write(vertexList[i] + " ");
LinkedList<int> queue = new LinkedList<int>();
queue.AddLast(i);
int u;
while (queue.Count != 0)
{
u = queue.First.Value;
queue.RemoveFirst();
int w = getFirstNeighbor(i);
while (w != -1)
{
if (!isVisited[w])
{
Console.Write(vertexList[w] + " ");
isVisited[w] = true;
queue.AddLast(w);
}
w = getNextNeighbor(u, w);
}
}
}

然后调用:

Console.WriteLine("广度遍历");
graph.bfs(0);

结果:

重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

//自己编写的代码 仅供参考

public class Node<T>

{

public bool accessed = false;

public T t;

}

public class MyGrapic<T>

{

private Node<T>[] arryNode = null;

private int[,] Matrix = null;

private int num;

public MyGrapic(Node<T>[] arrn)

{

arryNode = arrn;

var n = arrn.Length;

Matrix = new int[n, n];

this.num = n;

this.initMatix();

}

private void initMatix()

{

for (int i = 0; i < this.num; i++)

{

for (int j = 0; i < this.num; i++)

{

Matrix[i, j] = 0;

}

}

}

public void SetEdget(Node<T> n1, Node<T> n2)

{

int index1 = findNode(n1);

int index2 = findNode(n2);

Matrix[index1, index2] = 1;

Matrix[index2, index1] = 1;

}

private int findNode(Node<T> n)

{

int index = -1;

for (int i = 0; i < this.num; i++)

{

var a = arryNode[i]; index++;

if (a.Equals(n))

{

return i;

}

}

return index;

}

public void PrintMatix()

{

for (int i = 0; i < this.num; i++)

{

for (int j = 0; j < this.num; j++)

{

Console.Write("{0}  ", Matrix[i, j]);

}

Console.WriteLine();

}

}

private Node<T> findNeighbor(Node<T> node)

{

int index1 = findNode(node);

int index2 = -1;

for (int i = 0; i < this.num; i++)

{

if (Matrix[index1, i] == 1)

{

if (arryNode[i].accessed == false)

{

index2 = i;

break;

}

}

}

if (index2 == -1)

{

return null;

}

return arryNode[index2];

}

/// <summary>

/// 通过邻接节点来获取下一个节点

/// </summary>

/// <param name="node1"></param>

/// <param name="node2"></param>

/// <returns></returns>

private Node<T> findNeighbor2(Node<T> node1, Node<T> node2)

{

int index1 = findNode(node1);

int j = findNode(node2);

int index2 = -1;

for (int i = j; i < this.num; i++)

{

if (Matrix[index1, i] == 1)

{

if (arryNode[i].accessed == false)

{

index2 = i;

break;

}

}

}

if (index2 == -1)

{

return null;

}

return arryNode[index2];

}

public void DSF(Node<T> node)

{

if (node.accessed == true)

{

return;

}

Console.Write("{0}\t", node.t);

node.accessed = true;

var neighbor = findNeighbor(node);

while (neighbor != null)

{

DSF(neighbor);

neighbor = findNeighbor2(node, neighbor);

}

}

}

重新整理数据结构与算法(c#)—— 图的深度遍历和广度遍历[十一]

上一篇:图的建立——邻接矩阵表示(C语言+VC6.0平台)


下一篇:图的dfs遍历模板(邻接表和邻接矩阵存储)