数据结构c++实现

数据结构c++实现
目  录
1、顺序表    1
Seqlist.h    1
Test.cpp    6
2、单链表    8
ListNode.h    8
SingleList.h    10
test.cpp    20
3、双向链表    22
NodeList.h    22
DoubleList.h    24
Test.cpp    34
4、循环链表    36
ListNode.h    36
CircularList.h    37
Test.cpp    47
5、顺序栈    49
SeqStack.h    49
Test.cpp    54
6、链式栈    55
StackNode.h    55
LinkStack.h    56
Test.cpp    60
7、顺序队列    62
SeqQueue.h    63
Test.cpp    68
8、链式队列    70
QueueNode.h    70
LinkQueue.h    71
Test.cpp    75
9、优先级队列    77
QueueNode.h    77
Compare.h    78
PriorityQueue.h    80
Test.cpp    85
10、串    88
MyString.h    88
MyString.cpp    90
test.cpp    101
11、二叉树    104
BinTreeNode.h    104
BinaryTree.h    112
Test.cpp    124
12、线索二叉树    126
ThreadNode.h    126
ThreadTree.h    128
ThreadInorderIterator.h    128
test.cpp    139
13、堆    140
MinHeap.h    140
test.cpp    147
14、哈夫曼树    149
BinTreeNode.h    149
BinaryTree.h    151
MinHeap.h    156
Huffman.h    161
Test.cpp    163
15、树    164
QueueNode.h    164
LinkQueue.h    165
TreeNode.h    169
Tree.h    170
test.cpp    187
16、B+树    189
BTreeNode.h    189
BTree.h    192
test.cpp    215
17、图    217
MinHeap.h    217
Edge.h    222
Vertex.h    223
Graph.h    224
test.cpp    246
18、排序    249
Data.h    249
QueueNode.h    255
LinkQueue.h    259
Sort.h    263
test.cpp    278
 
1、顺序表

Seqlist.h

const int DefaultSize=100;

template <typename Type> class SeqList{
public:
    SeqList(int sz=DefaultSize)
        :m_nmaxsize(sz),m_ncurrentsize(-1){
        if(sz>0){
            m_elements=new Type[m_nmaxsize];
        }
    }
    ~SeqList(){
        delete[] m_elements;
    }
    int Length() const{                    //get the length
        return m_ncurrentsize+1;
    }
    int Find(Type x) const;                //find the position of x
    int IsElement(Type x) const;        //is it in the list
    int Insert(Type x,int i);            //insert data
    int Remove(Type x);                    //delete data
    int IsEmpty(){
        return m_ncurrentsize==-1;
    }
    int IsFull(){
        return m_ncurrentsize==m_nmaxsize-1;
    }
    Type Get(int i){                    //get the ith data
        return i<0||i>m_ncurrentsize?(cout<<"can‘t find the element"<<endl,0):m_elements[i];
    }
    void Print();

private:
    Type *m_elements;
    const int m_nmaxsize;
    int m_ncurrentsize;
};

template <typename Type> int SeqList<Type>::Find(Type x) const{
    for(int i=0;i<m_ncurrentsize;i++)
        if(m_elements[i]==x)
            return i;
    cout<<"can‘t find the element you want to find"<<endl;
    return -1;
}

template <typename Type> int SeqList<Type>::IsElement(Type x) const{
    if(Find(x)==-1)
        return 0;
    return 1;
}

template <typename Type> int SeqList<Type>::Insert(Type x, int i){
    if(i<0||i>m_ncurrentsize+1||m_ncurrentsize==m_nmaxsize-1){
        cout<<"the operate is illegal"<<endl;
        return 0;
    }
    m_ncurrentsize++;
    for(int j=m_ncurrentsize;j>i;j--){
        m_elements[j]=m_elements[j-1];
    }
    m_elements[i]=x;
    return 1;
}

template <typename Type> int SeqList<Type>::Remove(Type x){
    int size=m_ncurrentsize;
    for(int i=0;i<m_ncurrentsize;){
        if(m_elements[i]==x){
            for(int j=i;j<m_ncurrentsize;j++){
                m_elements[j]=m_elements[j+1];
            }
            m_ncurrentsize--;
            continue;
        }
        i++;
    }
    if(size==m_ncurrentsize){
        cout<<"can‘t find the element you want to remove"<<endl;
        return 0;
    }
    return 1;
}

template <typename Type> void SeqList<Type>::Print(){
    for(int i=0;i<=m_ncurrentsize;i++)
        cout<<i+1<<":\t"<<m_elements[i]<<endl;
    cout<<endl<<endl;
}

Test.cpp

#include <iostream>
#include "SeqList.h"

using namespace std;

int main()
{
    SeqList<int> test(15);
    int array[15]={2,5,8,1,9,9,7,6,4,3,2,9,7,7,9};
    for(int i=0;i<15;i++){
        test.Insert(array[i],0);
}
    test.Insert(1,0);
    cout<<(test.Find(0)?"can‘t be found ":"Be found ")<< 0 << endl<<endl;
    test.Remove(7);
    test.Print();
    test.Remove(9);
    test.Print();
    test.Remove(0);
    test.Print();
    return 0;
}
2、    单链表

ListNode.h

template<typename Type> class SingleList;

template<typename Type> class ListNode{
private:
    friend typename SingleList<Type>;

    ListNode():m_pnext(NULL){}
    ListNode(const Type item,ListNode<Type> *next=NULL):m_data(item),m_pnext(next){}
    ~ListNode(){
        m_pnext=NULL;
    }

public:
    Type GetData();
    friend ostream& operator<< <Type>(ostream& ,ListNode<Type>&);

private:
    Type m_data;
    ListNode *m_pnext;
};

template<typename Type> Type ListNode<Type>::GetData(){
    return this->m_data;
}

template<typename Type> ostream& operator<<(ostream& os,ListNode<Type>& out){
    os<<out.m_data;
    return os;
}


SingleList.h

#include "ListNode.h"

template<typename Type> class SingleList{
public:
    SingleList():head(new ListNode<Type>()){}
    ~SingleList(){
        MakeEmpty();
        delete head;
    }

public:
    void MakeEmpty();                       //make the list empty
    int Length();                           //get the length
    ListNode<Type> *Find(Type value,int n); //find thd nth data which is equal to value
    ListNode<Type> *Find(int n);            //find the nth data
    bool Insert(Type item,int n=0);         //insert the data in the nth position
    Type Remove(int n=0);                   //remove the nth data
    bool RemoveAll(Type item);              //remove all the data which is equal to item
    Type Get(int n);                        //get the nth data
    void Print();                           //print the list

private:
    ListNode<Type> *head;
};

template<typename Type> void SingleList<Type>::MakeEmpty(){
    ListNode<Type> *pdel;
    while(head->m_pnext!=NULL){
        pdel=head->m_pnext;
        head->m_pnext=pdel->m_pnext;
        delete pdel;
    }
}

template<typename Type> int SingleList<Type>::Length(){
    ListNode<Type> *pmove=head->m_pnext;
    int count=0;
    while(pmove!=NULL){
        pmove=pmove->m_pnext;
        count++;
    }
    return count;
}

template<typename Type> ListNode<Type>* SingleList<Type>::Find(int n){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        return NULL;
    }
    ListNode<Type> *pmove=head->m_pnext;
    for(int i=0;i<n&&pmove;i++){
        pmove=pmove->m_pnext;
    }
    if(pmove==NULL){
        cout<<"The n is out of boundary"<<endl;
        return NULL;
    }
    return pmove;
}

template<typename Type> ListNode<Type>* SingleList<Type>::Find(Type value,int n){
    if(n<1){
        cout<<"The n is illegal"<<endl;
        return NULL;
    }
    ListNode<Type> *pmove=head;
    int count=0;
    while(count!=n&&pmove){
        pmove=pmove->m_pnext;
        if(pmove->m_data==value){
            count++;
        }

    }
    if(pmove==NULL){
        cout<<"can‘t find the element"<<endl;
        return NULL;
    }
    return pmove;
}

template<typename Type> bool SingleList<Type>::Insert(Type item, int n){
    if(n<0){
        cout<<"The n is illegal"<<endl;
        return 0;
    }
    ListNode<Type> *pmove=head;
    ListNode<Type> *pnode=new ListNode<Type>(item);
    if(pnode==NULL){
        cout<<"Application error!"<<endl;
        return 0;
    }
    for(int i=0;i<n&&pmove;i++){
        pmove=pmove->m_pnext;
    }
    if(pmove==NULL){
        cout<<"the n is illegal"<<endl;
        return 0;
    }
    pnode->m_pnext=pmove->m_pnext;
    pmove->m_pnext=pnode;
    return 1;
}

template<typename Type> bool SingleList<Type>::RemoveAll(Type item){
    ListNode<Type> *pmove=head;
    ListNode<Type> *pdel=head->m_pnext;
    while(pdel!=NULL){
        if(pdel->m_data==item){
            pmove->m_pnext=pdel->m_pnext;
            delete pdel;
            pdel=pmove->m_pnext;
            continue;
        }
        pmove=pmove->m_pnext;
        pdel=pdel->m_pnext;
    }
    return 1;
}

template<typename Type> Type SingleList<Type>::Remove(int n){
    if(n<0){
        cout<<"can‘t find the element"<<endl;
        exit(1);
    }
    ListNode<Type> *pmove=head,*pdel;
    for(int i=0;i<n&&pmove->m_pnext;i++){
        pmove=pmove->m_pnext;
    }
    if(pmove->m_pnext==NULL){
        cout<<"can‘t find the element"<<endl;
        exit(1);
    }
    pdel=pmove->m_pnext;
    pmove->m_pnext=pdel->m_pnext;
    Type temp=pdel->m_data;
    delete pdel;
    return temp;
}

template<typename Type> Type SingleList<Type>::Get(int n){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        exit(1);
    }
    ListNode<Type> *pmove=head->m_pnext;
    for(int i=0;i<n;i++){
        pmove=pmove->m_pnext;
        if(NULL==pmove){
            cout<<"The n is out of boundary"<<endl;
            exit(1);
        }
    }
    return pmove->m_data;
}

template<typename Type> void SingleList<Type>::Print(){
    ListNode<Type> *pmove=head->m_pnext;
    cout<<"head";
    while(pmove){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }
    cout<<"--->over"<<endl<<endl<<endl;
}

test.cpp

#include <iostream>
using namespace std;

#include "SingleList.h"


int main()
{
    SingleList<int> list;
    for(int i=0;i<20;i++){
        list.Insert(i*3,i);
    }
    for(int i=0;i<5;i++){
        list.Insert(3,i*3);
    }
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    list.Remove(5);

    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    list.RemoveAll(3);
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    cout<<"The third element is "<<list.Get(3)<<endl;

    cout<<*list.Find(18,1)<<endl;

    list.Find(100);

    list.MakeEmpty();
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    return 0;
}

3、    双向链表

NodeList.h

template<typename Type> class DoublyList;

template<typename Type> class ListNode{
private:
    friend class DoublyList<Type>;
    ListNode():m_pprior(NULL),m_pnext(NULL){}
    ListNode(const Type item,ListNode<Type> *prior=NULL,ListNode<Type> *next=NULL)
        :m_data(item),m_pprior(prior),m_pnext(next){}
    ~ListNode(){
        m_pprior=NULL;
        m_pnext=NULL;
    }
public:
    Type GetData();
private:
    Type m_data;
    ListNode *m_pprior;
    ListNode *m_pnext;
};

template<typename Type> Type ListNode<Type>::GetData(){
    return this->m_data;
}

DoubleList.h

#include "ListNode.h"

template<typename Type> class DoublyList{
public:
    DoublyList():head(new ListNode<Type>()){    //the head node point to itself
        head->m_pprior=head;
        head->m_pnext=head;
    }
    ~DoublyList(){
        MakeEmpty();
        delete head;
    }

public:
    void MakeEmpty();   //make the list empty
    int Length();       //get the length of the list
    ListNode<Type> *Find(int n=0);  //find the nth data
    ListNode<Type> * FindData(Type item);   //find the data which is equal to item
    bool Insert(Type item,int n=0);     //insert item in the nth data
    Type Remove(int n=0);   //delete the nth data
    Type Get(int n=0);      //get the nth data
    void Print();           //print the list

private:
    ListNode<Type> *head;
};

template<typename Type> void DoublyList<Type>::MakeEmpty(){
    ListNode<Type> *pmove=head->m_pnext,*pdel;
    while(pmove!=head){
        pdel=pmove;
        pmove=pdel->m_pnext;
        delete pdel;
    } 
    head->m_pnext=head;
    head->m_pprior=head;
}

template<typename Type> int DoublyList<Type>::Length(){
    ListNode<Type> *pprior=head->m_pprior,*pnext=head->m_pnext;
    int count=0;
    while(1){
        if(pprior->m_pnext==pnext){
            break;
        }
        if(pprior==pnext&&pprior!=head){
            count++;
            break;
        }
        count+=2;
        pprior=pprior->m_pprior;
        pnext=pnext->m_pnext;
    }
    return count;
}

template<typename Type> ListNode<Type>* DoublyList<Type>::Find(int n = 0){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        return NULL;
    }
    ListNode<Type> *pmove=head->m_pnext;
    for(int i=0;i<n;i++){
        pmove=pmove->m_pnext;
        if(pmove==head){
            cout<<"The n is out of boundary"<<endl;
            return NULL;
        }
    }
    return pmove;
}

template<typename Type> bool DoublyList<Type>::Insert(Type item,int n){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        return 0;
    }
    ListNode<Type> *newnode=new ListNode<Type>(item),*pmove=head;
    if(newnode==NULL){
        cout<<"Application Erorr!"<<endl;
        exit(1);
    }
    for(int i=0;i<n;i++){   //find the position for insert
        pmove=pmove->m_pnext;
        if(pmove==head){
            cout<<"The n is out of boundary"<<endl;
            return 0;
        }
    }

    //insert the data
    newnode->m_pnext=pmove->m_pnext;
    newnode->m_pprior=pmove;
    pmove->m_pnext=newnode;
    newnode->m_pnext->m_pprior=newnode;
    return 1;
}

template<typename Type> Type DoublyList<Type>::Remove(int n = 0){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        exit(1);
    }
    ListNode<Type> *pmove=head,*pdel;
    for(int i=0;i<n;i++){   //find the position for delete
        pmove=pmove->m_pnext;
        if(pmove==head){
            cout<<"The n is out of boundary"<<endl;
            exit(1);
        }
    }

    //delete the data
    pdel=pmove;
    pmove->m_pprior->m_pnext=pdel->m_pnext;
    pmove->m_pnext->m_pprior=pdel->m_pprior;
    Type temp=pdel->m_data;
    delete pdel;
    return temp;
}

template<typename Type> Type DoublyList<Type>::Get(int n = 0){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        exit(1);
    }
    ListNode<Type> *pmove=head;
    for(int i=0;i<n;i++){
        pmove=pmove->m_pnext;
        if(pmove==head){
            cout<<"The n is out of boundary"<<endl;
            exit(1);
        }
    }
    return pmove->m_data;
}

template<typename Type> void DoublyList<Type>::Print(){
    ListNode<Type> *pmove=head->m_pnext;
    cout<<"head";
    while(pmove!=head){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }
    cout<<"--->over"<<endl<<endl<<endl;

}

template<typename Type> ListNode<Type>* DoublyList<Type>::FindData(Type item){
    ListNode<Type> *pprior=head->m_pprior,*pnext=head->m_pnext;
    while(pprior->m_pnext!=pnext && pprior!=pnext){ //find the data in the two direction
        if(pprior->m_data==item){
            return pprior;
        }
        if(pnext->m_data==item){
            return pnext;
        }
        pprior=pprior->m_pprior;
        pnext=pnext->m_pnext;
    }
    cout<<"can‘t find the element"<<endl;
    return NULL;
}

Test.cpp

#include <iostream>
#include "DoublyList.h"

using namespace std;

int main()
{
    DoublyList<int> list;
    for(int i=0;i<20;i++){
        list.Insert(i*3,i);
    }
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();
    for(int i=0;i<5;i++){
        list.Insert(3,i*3);
    }
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    list.Remove(5);
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    cout<<list.FindData(54)->GetData()<<endl;

    cout<<"The third element is "<<list.Get(3)<<endl;

    list.MakeEmpty();
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();


    return 0;
}

4、    循环链表

ListNode.h

template<typename Type> class CircularList;

template<typename Type> class ListNode{
private:
    friend class CircularList<Type>;
    ListNode():m_pnext(NULL){}
    ListNode(const Type item,ListNode<Type> *next=NULL):m_data(item),m_pnext(next){}
    ~ListNode(){
        m_pnext=NULL;
    }
    
private:
    Type m_data;
    ListNode *m_pnext;
};

CircularList.h

#include "ListNode.h"

template<typename Type> class CircularList{
public:
    CircularList():head(new ListNode<Type>()){
        head->m_pnext=head;    
    }
    ~CircularList(){
        MakeEmpty();
        delete head;
    }
public:
    void MakeEmpty();    //clear the list
    int Length();        //get the length
    ListNode<Type> *Find(Type value,int n);    //find the nth data which is equal to value
    ListNode<Type> *Find(int n);            //find the nth data
    bool Insert(Type item,int n=0);            //insert the data into the nth data of the list
    Type Remove(int n=0);                    //delete the nth data
    bool RemoveAll(Type item);                //delete all the datas which are equal to value
    Type Get(int n);    //get the nth data
    void Print();        //print the list

private:
    ListNode<Type> *head;

};

template<typename Type> void CircularList<Type>::MakeEmpty(){
    ListNode<Type> *pdel,*pmove=head;
    while(pmove->m_pnext!=head){
        pdel=pmove->m_pnext;
        pmove->m_pnext=pdel->m_pnext;
        delete pdel;
    }
}

template<typename Type> int CircularList<Type>::Length(){
    ListNode<Type> *pmove=head;
    int count=0;
    while(pmove->m_pnext!=head){
        pmove=pmove->m_pnext;
        count++;
    }
    return count;
}

template<typename Type> ListNode<Type>* CircularList<Type>::Find(int n){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        return NULL;
    }
    ListNode<Type> *pmove=head->m_pnext;
    for(int i=0;i<n&&pmove!=head;i++){
        pmove=pmove->m_pnext;
    }
    if(pmove==head){
        cout<<"The n is out of boundary"<<endl;
        return NULL;
    }
    return pmove;
}

template<typename Type> ListNode<Type>* CircularList<Type>::Find(Type value,int n){
    if(n<1){
        cout<<"The n is illegal"<<endl;
        return NULL;
    }
    ListNode<Type> *pmove=head;
    int count=0;
    while(count!=n){
        pmove=pmove->m_pnext;
        if(pmove->m_data==value){
            count++;
        }
        if(pmove==head){
            cout<<"can‘t find the element"<<endl;
            return NULL;
        }
    }
    return pmove;
}

template<typename Type> bool CircularList<Type>::Insert(Type item, int n){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        return 0;
    }
    ListNode<Type> *pmove=head;
    ListNode<Type> *pnode=new ListNode<Type>(item);
    if(pnode==NULL){
        cout<<"Application error!"<<endl;
        exit(1);
    }
    for(int i=0;i<n;i++){
        pmove=pmove->m_pnext;
        if(pmove==head){
            cout<<"The n is out of boundary"<<endl;
            return 0;
        }
    }

    pnode->m_pnext=pmove->m_pnext;
    pmove->m_pnext=pnode;
    return 1;
}

template<typename Type> bool CircularList<Type>::RemoveAll(Type item){
    ListNode<Type> *pmove=head;
    ListNode<Type> *pdel=head->m_pnext;
    while(pdel!=head){
        if(pdel->m_data==item){
            pmove->m_pnext=pdel->m_pnext;
            delete pdel;
            pdel=pmove->m_pnext;
            continue;
        }
        pmove=pmove->m_pnext;
        pdel=pdel->m_pnext;
    }
    return 1;
}

template<typename Type> Type CircularList<Type>::Remove(int n){
    if(n<0){
        cout<<"can‘t find the element"<<endl;
        exit(1);
    }
    ListNode<Type> *pmove=head,*pdel;
    for(int i=0;i<n&&pmove->m_pnext!=head;i++){
        pmove=pmove->m_pnext;
    }
    if(pmove->m_pnext==head){
        cout<<"can‘t find the element"<<endl;
        exit(1);
    }
    pdel=pmove->m_pnext;
    pmove->m_pnext=pdel->m_pnext;
    Type temp=pdel->m_data;
    delete pdel;
    return temp;
}

template<typename Type> Type CircularList<Type>::Get(int n){
    if(n<0){
        cout<<"The n is out of boundary"<<endl;
        exit(1);
    }
    ListNode<Type> *pmove=head->m_pnext;
    for(int i=0;i<n;i++){
        pmove=pmove->m_pnext;
        if(pmove==head){
            cout<<"The n is out of boundary"<<endl;
            exit(1);
        }
    }
    return pmove->m_data;
}

template<typename Type> void CircularList<Type>::Print(){
    ListNode<Type> *pmove=head->m_pnext;
    cout<<"head";
    while(pmove!=head){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }
    cout<<"--->over"<<endl<<endl<<endl;
}

Test.cpp

#include <iostream>
#include "CircularList.h"

using namespace std;

int main()
{
    CircularList<int> list;
    for(int i=0;i<20;i++){
        list.Insert(i*3,i);
    }
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();
    for(int i=0;i<5;i++){
        list.Insert(3,i*3);
    }
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    list.Remove(5);
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    list.RemoveAll(3);
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();

    cout<<"The third element is "<<list.Get(3)<<endl;

    list.MakeEmpty();
    cout<<"the Length of the list is "<<list.Length()<<endl;
    list.Print();


    return 0;
}

5、    顺序栈

SeqStack.h

template<typename Type> class SeqStack{
public:
    SeqStack(int sz):m_ntop(-1),m_nMaxSize(sz){
        m_pelements=new Type[sz];
        if(m_pelements==NULL){
            cout<<"Application Error!"<<endl;
            exit(1);
        }
    }
    ~SeqStack(){
        delete[] m_pelements;
    }

public:

    void Push(const Type item); //push data
    Type Pop();                 //pop data
    Type GetTop() const;        //get data
    void Print();               //print the stack
    void MakeEmpty(){           //make the stack empty
        m_ntop=-1;
    }
    bool IsEmpty() const{
        return m_ntop==-1;
    }
    bool IsFull() const{
        return m_ntop==m_nMaxSize-1;
    }
    

private:
    int m_ntop;
    Type *m_pelements;
    int m_nMaxSize;

};

template<typename Type> void SeqStack<Type>::Push(const Type item){
    if(IsFull()){
        cout<<"The stack is full!"<<endl;
        return;
    }
    m_pelements[++m_ntop]=item;
}

template<typename Type> Type SeqStack<Type>::Pop(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    return m_pelements[m_ntop--];
}

template<typename Type> Type SeqStack<Type>::GetTop() const{
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    return m_pelements[m_ntop];
}

template<typename Type> void SeqStack<Type>::Print(){
    cout<<"bottom";
    for(int i=0;i<=m_ntop;i++){
        cout<<"--->"<<m_pelements[i];
    }
    cout<<"--->top"<<endl<<endl<<endl;
}

Test.cpp

#include<iostream>
using namespace std;

#include "SeqStack.h"

int main(){
    SeqStack<int> stack(10);
    int init[10]={1,2,6,9,0,3,8,7,5,4};
    for(int i=0;i<10;i++){
        stack.Push(init[i]);
    }
    stack.Print();

    stack.Push(88);

    cout<<stack.Pop()<<endl;
    stack.Print();
    
    stack.MakeEmpty();
    stack.Print();

    stack.Pop();
    return 0;
}

6、    链式栈

StackNode.h

template<typename Type> class LinkStack;

template<typename Type> class StackNode{
private:
    friend class LinkStack<Type>;
    StackNode(Type dt,StackNode<Type> *next=NULL):m_data(dt),m_pnext(next){} 

private:
    Type m_data;
    StackNode<Type> *m_pnext;
};

LinkStack.h

#include "StackNode.h"

template<typename Type> class LinkStack{
public:
    LinkStack():m_ptop(NULL){}
    ~LinkStack(){
        MakeEmpty();
    }

public:
    void MakeEmpty();           //make the stack empty
    void Push(const Type item); //push the data
    Type Pop();                 //pop the data
    Type GetTop() const;        //get the data
    void Print();               //print the stack
        
    bool IsEmpty() const{
        return m_ptop==NULL;
    }
    
private:
    StackNode<Type> *m_ptop;
};

template<typename Type> void LinkStack<Type>::MakeEmpty(){
    StackNode<Type> *pmove;
    while(m_ptop!=NULL){
        pmove=m_ptop;
        m_ptop=m_ptop->m_pnext;
        delete pmove;
    }
}

template<typename Type> void LinkStack<Type>::Push(const Type item){
    m_ptop=new StackNode<Type>(item,m_ptop);
}

template<typename Type> Type LinkStack<Type>::GetTop() const{
    if(IsEmpty()){
        cout<<"There is no elements!"<<endl;
        exit(1);
    }
    return m_ptop->m_data;
}

template<typename Type> Type LinkStack<Type>::Pop(){
    if(IsEmpty()){
        cout<<"There is no elements!"<<endl;
        exit(1);
    }
    StackNode<Type> *pdel=m_ptop;
    m_ptop=m_ptop->m_pnext;
    Type temp=pdel->m_data;
    delete pdel;
    return temp;
}

template<typename Type> void LinkStack<Type>::Print(){
    StackNode<Type> *pmove=m_ptop;
    cout<<"buttom";
    while(pmove!=NULL){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }
    cout<<"--->top"<<endl<<endl<<endl;
}

Test.cpp

#include <iostream>
using namespace std;

#include "LinkStack.h"

int main(){
    LinkStack<int> stack;
    int init[10]={1,3,5,7,4,2,8,0,6,9};
    for(int i=0;i<10;i++){
        stack.Push(init[i]);
    }
    stack.Print();

    cout<<stack.Pop()<<endl;
    stack.Print();
    
    cout<<stack.GetTop()<<endl;
    stack.Print();

    cout<<stack.Pop()<<endl;
    stack.Print();

    stack.MakeEmpty();
    stack.Print();
    
    stack.Pop();


    return 0;
}

7.顺序队列

SeqQueue.h

template<typename Type> class SeqQueue{
public:
    SeqQueue(int sz):m_nrear(0),m_nfront(0),m_ncount(0),m_nMaxSize(sz){
        m_pelements=new Type[sz];
        if(m_pelements==NULL){
            cout<<"Application Error!"<<endl;
            exit(1);
        }
    }
    ~SeqQueue(){
        delete[] m_pelements;
    }
    void MakeEmpty();               //make the queue empty
    bool IsEmpty();
    bool IsFull();
    bool Append(const Type item);   //insert data
    Type Delete();                  //delete data
    Type Get();                     //get data
    void Print();                   //print the queue

private:
    int m_nrear;
    int m_nfront;
    int m_ncount;
    int m_nMaxSize;
    Type *m_pelements;
    
};

template<typename Type> void SeqQueue<Type>::MakeEmpty(){
    this->m_ncount=0;
    this->m_nfront=0;
    this->m_nrear=0;
}

template<typename Type> bool SeqQueue<Type>::IsEmpty(){
    return m_ncount==0;
}

template<typename Type> bool SeqQueue<Type>::IsFull(){
    return m_ncount==m_nMaxSize;
}

template<typename Type> bool SeqQueue<Type>::Append(const Type item){
    if(IsFull()){
        cout<<"The queue is full!"<<endl;
        return 0;
    }
    m_pelements[m_nrear]=item;
    m_nrear=(m_nrear+1)%m_nMaxSize;
    m_ncount++;
    return 1;
}

template<typename Type> Type SeqQueue<Type>::Delete(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    Type temp=m_pelements[m_nfront];
    m_nfront=(m_nfront+1)%m_nMaxSize;
    m_ncount--;
    return temp;
}

template<typename Type> Type SeqQueue<Type>::Get(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    return m_pelements[m_nfront];
}

template<typename Type> void SeqQueue<Type>::Print(){
    cout<<"front";
    for(int i=0;i<m_ncount;i++){
        cout<<"--->"<<m_pelements[(m_nfront+i+m_nMaxSize)%m_nMaxSize];
    }
    cout<<"--->rear"<<endl<<endl<<endl;
}

Test.cpp

#include <iostream>
using namespace std;

#include "SeqQueue.h"

int main(){
    SeqQueue<int> queue(10);
    int init[10]={1,6,9,0,2,5,8,3,7,4};
    for(int i=0;i<5;i++){
        queue.Append(init[i]);
    }
    queue.Print();

    cout<<queue.Delete()<<endl;
    queue.Print();

    for(int i=5;i<10;i++){
        queue.Append(init[i]);
    }
    queue.Print();

    cout<<queue.Get()<<endl;

    queue.MakeEmpty();
    queue.Print();

    queue.Append(1);
    queue.Print();

    return 0;
}

8、链式队列

QueueNode.h

template<typename Type> class LinkQueue;

template<typename Type> class QueueNode{
private:
    friend class LinkQueue<Type>;
    QueueNode(const Type item,QueueNode<Type> *next=NULL)
        :m_data(item),m_pnext(next){}
private:
    Type m_data;
    QueueNode<Type> *m_pnext;
};

LinkQueue.h

#include "QueueNode.h"

template<typename Type> class LinkQueue{
public:
    LinkQueue():m_prear(NULL),m_pfront(NULL){}
    ~LinkQueue(){
        MakeEmpty();
    }
    void Append(const Type item);   //insert data
    Type Delete();                  //delete data
    Type GetFront();                //get data
    void MakeEmpty();               //make the queue empty
    void Print();                   //print the queue

    bool IsEmpty() const{
        return m_pfront==NULL;
    }

private:
    QueueNode<Type> *m_prear,*m_pfront;
};

template<typename Type> void LinkQueue<Type>::MakeEmpty(){
    QueueNode<Type> *pdel;
    while(m_pfront){
        pdel=m_pfront;
        m_pfront=m_pfront->m_pnext;
        delete pdel;
    }
}

template<typename Type> void LinkQueue<Type>::Append(const Type item){
    if(m_pfront==NULL){
        m_pfront=m_prear=new QueueNode<Type>(item);
    }
    else{
        m_prear=m_prear->m_pnext=new QueueNode<Type>(item);
    }
}

template<typename Type> Type LinkQueue<Type>::Delete(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    QueueNode<Type> *pdel=m_pfront;
    Type temp=m_pfront->m_data;
    m_pfront=m_pfront->m_pnext;
    delete pdel;
    return temp;
}

template<typename Type> Type LinkQueue<Type>::GetFront(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    return m_pfront->m_data;
}

template<typename Type> void LinkQueue<Type>::Print(){
    QueueNode<Type> *pmove=m_pfront;
    cout<<"front";
    while(pmove){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }
    cout<<"--->rear"<<endl<<endl<<endl;
}

Test.cpp

#include <iostream>

using namespace std;

#include "LinkQueue.h"

int main(){
    LinkQueue<int> queue;
    int init[10]={1,3,6,8,9,2,0,5,4,7};

    for(int i=0;i<10;i++){
        queue.Append(init[i]);
    }
    queue.Print();

    queue.Delete();
    queue.Print();

    cout<<queue.GetFront()<<endl;
    queue.Print();

    queue.MakeEmpty();
    queue.Print();

    queue.Delete();

    return 0;
}

9、优先级队列

QueueNode.h

template<typename Type,typename Cmp> class PriorityQueue;

template<typename Type,typename Cmp> class QueueNode{
private:
    friend class PriorityQueue<Type,Cmp>;
    QueueNode(const Type item,QueueNode<Type,Cmp> *next=NULL)
        :m_data(item),m_pnext(next){}
private:
    Type m_data;
    QueueNode<Type,Cmp> *m_pnext;
};

Compare.h

template<typename Type> class Compare{    //处理一般比较大小
public:
    static bool lt(Type item1,Type item2);
};

template<typename Type> bool Compare<Type>::lt(Type item1, Type item2){
    return item1<item2;
}

struct SpecialData{
    friend ostream& operator<<(ostream& ,SpecialData &);
    int m_ntenor;
    int m_npir;
};

ostream& operator<<(ostream& os,SpecialData &out){
    os<<out.m_ntenor<<"   "<<out.m_npir;
    return os;
}

class SpecialCmp{        //处理特殊比较大小,用户可添加适当的类
public:
    static bool lt(SpecialData item1,SpecialData item2);
};

bool SpecialCmp::lt(SpecialData item1, SpecialData item2){
    return item1.m_npir<item2.m_npir;
}

PriorityQueue.h

#include "QueueNode.h"
#include "Compare.h"

template<typename Type,typename Cmp> class PriorityQueue{    //Cmp is Designed for compare
public:
    PriorityQueue():m_prear(NULL),m_pfront(NULL){}
    ~PriorityQueue(){
        MakeEmpty();
    }

    void MakeEmpty();               //make the queue empty
    void Append(const Type item);   //insert data
    Type Delete();                  //delete data
    Type GetFront();                //get data
    void Print();                   //print the queue
        
    bool IsEmpty() const{           
        return m_pfront==NULL;
    }
    

private:
    QueueNode<Type,Cmp> *m_prear,*m_pfront;
};

template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::MakeEmpty(){
    QueueNode<Type,Cmp> *pdel;
    while(m_pfront){
        pdel=m_pfront;
        m_pfront=m_pfront->m_pnext;
        delete pdel;
    }
}

template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::Append(const Type item){
    if(m_pfront==NULL){
        m_pfront=m_prear=new QueueNode<Type,Cmp>(item);
    }
    else{
        m_prear=m_prear->m_pnext=new QueueNode<Type,Cmp>(item);
    }
}

template<typename Type,typename Cmp> Type PriorityQueue<Type,Cmp>::Delete(){
    if(IsEmpty()){
        cout<<"There is no elements!"<<endl;
        exit(1);
    }
    QueueNode<Type,Cmp> *pdel=m_pfront,*pmove=m_pfront;
    while(pmove->m_pnext){  //get the minimize priority‘s data

        //cmp:: lt is used for compare the two data, if the front one 
        //      is less than the back, then return 1
        if(Cmp::lt(pmove->m_pnext->m_data,pdel->m_pnext->m_data)){
            pdel=pmove;
        }
        pmove=pmove->m_pnext;
    }

    pmove=pdel;
    pdel=pdel->m_pnext;
    pmove->m_pnext=pdel->m_pnext;
    Type temp=pdel->m_data;
    delete pdel;
    return temp;
}

template<typename Type,typename Cmp> Type PriorityQueue<Type,Cmp>::GetFront(){
    if(IsEmpty()){
        cout<<"There is no elements!"<<endl;
        exit(1);
    }
    QueueNode<Type,Cmp> *pdel=m_pfront,*pmove=m_pfront->m_pnext;
    while(pmove){   //get the minimize priority‘s data
        if(Cmp::lt(pmove->m_data,pdel->m_data)){
            pdel=pmove;
        }
        pmove=pmove->m_pnext;
    }
    return pdel->m_data;
}

template<typename Type,typename Cmp> void PriorityQueue<Type,Cmp>::Print(){
    QueueNode<Type,Cmp> *pmove=m_pfront;
    cout<<"front";

    while(pmove){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }

    cout<<"--->rear"<<endl<<endl<<endl;
}

Test.cpp

#include <iostream>
#include <cstdlib>
using namespace std;

#include "PriorityQueue.h"

int main(){
    PriorityQueue<int,Compare<int> > queue;
    int init[10]={1,9,3,5,0,8,2,4,6,7};
    for(int i=0;i<10;i++){
        queue.Append(init[i]);
    }
    queue.Print();

    queue.Delete();

    queue.Print();

    system("pause");
    system("cls");
    
    PriorityQueue<SpecialData,SpecialCmp> spe_queue;
    int init2[5][2]={{34,2},{64,1},{18,3},{24,2},{55,4}};
    SpecialData data[5];
    for(int i=0;i<5;i++){
        data[i].m_npir=init2[i][1];
        data[i].m_ntenor=init2[i][0];
    }
    for(int i=0;i<5;i++){
        spe_queue.Append(data[i]);
    }
    spe_queue.Print();

    cout<<spe_queue.GetFront()<<endl<<endl;
    spe_queue.Delete();
    spe_queue.Print();
    
    
    return 0;
}
10、串

MyString.h

const int MAXSIZE=100;

class CMyString
{
public:
    CMyString(const CMyString& copy);
    CMyString(const char *init);
    CMyString();
    ~CMyString(){
        delete[] m_pstr;
    }
    int Length() const{
        return m_ncurlen;
    }
    int Find(CMyString part) const;
    char* GetBuffer() const;

public:
    CMyString& operator()(int pos,int len);
    bool operator==(const CMyString cmp_str) const;
    bool operator!=(const CMyString cmp_str) const;
    bool operator<(const CMyString cmp_str) const;
    bool operator>(const CMyString cmp_str) const;
    bool operator!() const{
        return m_ncurlen==0;
    }
    CMyString& operator=(const CMyString ?);
    CMyString& operator+=(const CMyString &add);
    char& operator[](int i);
    friend ostream& operator<<(ostream& ,CMyString&);
    friend istream& operator>>(istream& ,CMyString&);
private:
    void Next();

private:
    int m_ncurlen;
    char *m_pstr;
    int *m_pnext;
};

MyString.cpp

#include <iostream>
#include <cstring>

using namespace std;

#include "MyString.h"



CMyString::CMyString(){            //create empty string
    m_pstr=new char[MAXSIZE+1];
    if(!m_pstr){
        cerr<<"Allocation Error"<<endl;
        exit(1);
    }
    this->m_ncurlen=0;
    m_pstr[0]=\0;
}

CMyString::CMyString(const char *init){        //initialize the string with char*
    m_pstr=new char[MAXSIZE+1];
    if(!m_pstr){
        cerr<<"Allocation Error"<<endl;
        exit(1);
    }
    this->m_ncurlen=strlen(init);
    strcpy(m_pstr,init);
}

CMyString::CMyString(const CMyString ?){    //initialize the string with string
    m_pstr=new char[MAXSIZE+1];
    if(!m_pstr){
        cerr<<"Allocation Error"<<endl;
        exit(1);
    }
    this->m_ncurlen=copy.m_ncurlen;
    strcpy(m_pstr,copy.m_pstr);
}

int CMyString::Find(CMyString part) const{        //string match :KMP
    int posP=0,posT=0;
    int lengthP=part.m_ncurlen,lengthT=this->m_ncurlen;

    part.Next();
    while(posP<lengthP&&posT<lengthT){
        if(part.m_pstr[posP]==this->m_pstr[posT]){
            posP++;
            posT++;
        }
        else{
            if(posP==0){
                posT++;
            }
            else{
                posP=part.m_pnext[posP-1];
            }
        }
    }
    delete[] part.m_pnext;
    if(posP<lengthP){
        return 0;
    }
    else{
        return 1;
    }
}

void CMyString::Next(){            //get the next char for matching : KMP
    int length=this->m_ncurlen;
    this->m_pnext=new int[length];
    this->m_pnext[0]=0;
    for(int i=1;i<length;i++){
        int j=this->m_pnext[i-1];
        while(*(this->m_pstr+i)!=*(this->m_pstr+j)&&j>0){
            j=this->m_pnext[j-1];
        }
        if(*(this->m_pstr+i)==*(this->m_pstr+j)){
            this->m_pnext[i]=j+1;
        }
        else{
            this->m_pnext[i]=0;
        }
    }
//    for(int i=0;i<length;i++)
//        cout<<i<<":\t"<<m_pnext[i]<<endl;
}

char *CMyString::GetBuffer() const{        //get the char* from string
    return this->m_pstr;
}

CMyString& CMyString::operator()(int pos, int len){        //get len char with the begining of pos
    CMyString *temp=new CMyString;
    if(pos<0||pos+len-1>MAXSIZE||len<0){
        temp->m_ncurlen=0;
        temp->m_pstr[0]=\0;
    }
    else{
        if(pos+len-1>=m_ncurlen){
            len=m_ncurlen-pos;
        }
        temp->m_ncurlen=len;
        for(int i=0,j=pos;i<len;i++,j++){
            temp->m_pstr[i]=m_pstr[j];
        }
        temp->m_pstr[len]=\0;
    }
    return *temp;
}

bool CMyString::operator==(const CMyString cmp_str) const{
    if(this->m_ncurlen!=cmp_str.m_ncurlen){
        return 0;
    }
    for(int i=0;i<this->m_ncurlen;i++){
        if(this->m_pstr[i]!=cmp_str.m_pstr[i])
            return 0;
    }
    return 1;
}
bool CMyString::operator!=(const CMyString cmp_str) const{
    if(*this==cmp_str)
        return 0;
    return 1;
}
bool CMyString::operator<(const CMyString cmp_str) const{
    if(this->m_ncurlen!=cmp_str.m_ncurlen){
        return this->m_ncurlen<cmp_str.m_ncurlen;
    }
    for(int i=0;i<this->m_ncurlen;i++){
        if(this->m_pstr[i]!=cmp_str.m_pstr[i]){
            return this->m_pnext[i]<cmp_str.m_pnext[i];
        }
    }
    return 0;
}
bool CMyString::operator>(const CMyString cmp_str) const{
    if(*this<cmp_str||*this==cmp_str){
        return 0;
    }
    return 1;
}
CMyString& CMyString::operator=(const CMyString ?){        //赋值操作
    delete[] this->m_pstr;
    this->m_pstr=new char[copy.m_ncurlen+1];
    strcpy
        (this->m_pstr,copy.m_pstr);
    return *this;
}
CMyString& CMyString::operator+=(const CMyString &add){        //字符串追加
    int length=this->m_ncurlen+add.m_ncurlen;
    int n=this->m_ncurlen;
    CMyString temp(*this);
    delete[] this->m_pstr;
    this->m_pstr=new char[length+1];
    for(int i=0;i<n;i++){
        this->m_pstr[i]=temp[i];
    }
    for(int i=n;i<length;i++){
        this->m_pstr[i]=add.m_pstr[i-n];
    }
    this->m_pstr[length]=\0;
    return *this;
}
char& CMyString::operator[](int i){        //取元素
    if(i<0||i>=this->m_ncurlen){
        cout<<"out of boundary!"<<endl;
        exit(1);
    }
    return this->m_pstr[i];
}

ostream& operator<<(ostream& os,CMyString& str){
    os<<str.m_pstr;
    return os;
}

istream& operator>>(istream& is,CMyString& str){
    is>>str.m_pstr;
    return is;
}

test.cpp

#include <iostream>

using namespace std;

#include "MyString.h"

int main(){
    CMyString test1("babc");
    CMyString test2("abababcdefb");
    cout<<test2.Find(test1)<<endl;
    cout<<test2(2,3)<<endl;

    if(test1<test2){
        cout<<test1<<"<"<<test2<<endl;
    }
    else{
        if(test1==test2){
            cout<<test1<<"=="<<test2<<endl;
        }
        else{
            if(test1>test2){
                cout<<test1<<">"<<test2<<endl;
            }
        }
    }

    int length=test2.Length();
    for(int i=0;i<length;i++){
        cout<<test2[i];
    }
    cout<<endl;

    test1+=test2;
    cout<<test1<<endl;

    test1=test2;
    cout<<test1<<endl;

    return 0;
}
11、二叉树

BinTreeNode.h

template<typename Type> class BinaryTree;

template<typename Type> class BinTreeNode{
public:
    friend class BinaryTree<Type>;
    BinTreeNode():m_pleft(NULL),m_pright(NULL){}
    BinTreeNode(Type item,BinTreeNode<Type> *left=NULL,BinTreeNode<Type> *right=NULL)
        :m_data(item),m_pleft(left),m_pright(right){}

    Type GetData() const;        //get thd data
    BinTreeNode<Type> *GetLeft() const;        //get the left node
    BinTreeNode<Type> *GetRight() const;    //get the right node

    void SetData(const Type data);            //change the data
    void SetLeft(const BinTreeNode<Type> *left);    //change thd left node
    void SetRight(const BinTreeNode<Type> *right);    //change the right node

    void InOrder();        //inorder the tree with the root of the node
    void PreOrder();    //perorder the tree with the root of the node
    void PostOrder();    //postoder the tree with the root of the node
    
    int Size();            //get size
    int Height();        //get height
    BinTreeNode<Type> *Copy(const BinTreeNode<Type> *copy);    //copy the node
    void Destroy(){        //destroy the tree with the root of the node
        if(this!=NULL){
            this->m_pleft->Destroy();
            this->m_pright->Destroy();
            delete this;
        }
    }

    friend bool equal<Type>(const BinTreeNode<Type> *s,const BinTreeNode<Type> *t);    //is equal?

private:
    BinTreeNode<Type> *m_pleft,*m_pright;
    Type m_data;
};

template<typename Type> Type BinTreeNode<Type>::GetData() const{
    return this!=NULL?m_data:-1;
}

template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::GetLeft() const{
    return this!=NULL?m_pleft:NULL;
}

template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::GetRight() const{
    return this!=NULL?m_pright:NULL;
}

template<typename Type> void BinTreeNode<Type>::SetData(const Type data){
    if(this!=NULL){
        m_data=data;
    }
}

template<typename Type> void BinTreeNode<Type>::SetLeft(const BinTreeNode<Type> *left){
    if(this!=NULL){
        m_pleft=left;
    }
}

template<typename Type> void BinTreeNode<Type>::SetRight(const BinTreeNode<Type> *right){
    if(this!=NULL){
        m_pright=right;
    }
}

template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::Copy(const BinTreeNode<Type> *copy){
    if(copy==NULL){
        return NULL;
    }

    BinTreeNode<Type> *temp=new BinTreeNode<Type>(copy->m_data);
    temp->m_pleft=Copy(copy->m_pleft);
    temp->m_pright=Copy(copy->m_pright);
    return temp;
}

template<typename Type> bool equal(const BinTreeNode<Type> *s,const BinTreeNode<Type> *t){
    if(s==NULL&&t==NULL){
        return 1;
    }
    if(s&&t&&s->m_data==t->m_data&&equal(s->m_pleft,t->m_pleft)&&equal(s->m_pright,t->m_pright)){
        return 1;
    }
    return 0;
}

template<typename Type> void BinTreeNode<Type>::InOrder(){
    if(this!=NULL){
        this->m_pleft->InOrder();
        cout<<"--->"<<this->m_data;
        this->m_pright->InOrder();
    }
}

template<typename Type> void BinTreeNode<Type>::PreOrder(){
    if(this!=NULL){
        cout<<"--->"<<this->m_data;
        this->m_pleft->PreOrder();
        this->m_pright->PreOrder();
    }
}

template<typename Type> void BinTreeNode<Type>::PostOrder(){
    if(this!=NULL){
        this->m_pleft->PostOrder();
        this->m_pright->PostOrder();
        cout<<"--->"<<this->m_data;
    }
}

template<typename Type> int BinTreeNode<Type>::Size(){
    if(this==NULL){
        return 0;
    }
    return 1+this->m_pleft->Size()+this->m_pright->Size();
}

template<typename Type> int BinTreeNode<Type>::Height(){
    if(this==NULL){
        return -1;
    }
    int lheight,rheight;
    lheight=this->m_pleft->Height();
    rheight=this->m_pright->Height();
    return 1+(lheight>rheight?lheight:rheight);
}

BinaryTree.h

#include "BinTreeNode.h"

template<typename Type> class BinaryTree{
public:
    BinaryTree():m_proot(NULL){}
    BinaryTree(const Type stop):m_stop(stop),m_proot(NULL){}
    BinaryTree(BinaryTree<Type>& copy);
    virtual ~BinaryTree(){
        m_proot->Destroy();
    }
    virtual bool IsEmpty(){        //is empty?
        return m_proot==NULL;
    }
    
    virtual BinTreeNode<Type> *GetLeft(BinTreeNode<Type> *current);    //get the left node
    virtual BinTreeNode<Type> *GetRight(BinTreeNode<Type> *current);//get the right node
    virtual BinTreeNode<Type> *GetParent(BinTreeNode<Type> *current);//ghe thd parent
    const BinTreeNode<Type> *GetRoot() const;    //get root
    
    virtual bool Insert(const Type item);        //insert a new node
    virtual BinTreeNode<Type> *Find(const Type item) const;    //find thd node with the data

    void InOrder();    
    void PreOrder();
    void PostOrder();

    int Size();        //get size
    int Height();    //get height

    BinaryTree<Type>& operator=(const BinaryTree<Type> copy);    //evaluate node

    friend bool operator== <Type>(const BinaryTree<Type> s,const BinaryTree<Type> t);//is equal?
    friend ostream& operator<< <Type>(ostream& ,BinaryTree<Type>&);    //output the data
    friend istream& operator>> <Type>(istream& ,BinaryTree<Type>&);    //input the data
        
private:
    Type m_stop;        //just using for input the data;
    BinTreeNode<Type> *m_proot;

    //find the parent of current in the tree with the root of start
    BinTreeNode<Type> *GetParent(BinTreeNode<Type> *start,BinTreeNode<Type> *current);
    void Print(BinTreeNode<Type> *start,int n=0);    //print the tree with the root of start
};

template<typename Type> BinaryTree<Type>::BinaryTree(BinaryTree<Type>& copy){
    if(copy.m_proot){
        this->m_stop=copy.m_stop;
    }
    m_proot=m_proot->Copy(copy.m_proot);
}
template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetLeft(BinTreeNode<Type> *current){
    return m_proot&¤t?current->m_pleft:NULL;
}

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetRight(BinTreeNode<Type> *current){
    return m_proot&¤t?current->m_pright:NULL;
}

template<typename Type> const BinTreeNode<Type>* BinaryTree<Type>::GetRoot() const{
    return m_proot;
}

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetParent(BinTreeNode<Type> *start, BinTreeNode<Type> *current){
    if(start==NULL||current==NULL){
        return NULL;
    }
    if(start->m_pleft==current||start->m_pright==current){
        return start;
    }
    BinTreeNode<Type> *pmove;
    if((pmove=GetParent(start->m_pleft,current))!=NULL){//find the parent in the left subtree
        return pmove;
    }
    else{
        return GetParent(start->m_pright,current);    //find the parent in the right subtree
    }
}

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::GetParent(BinTreeNode<Type> *current){
    return m_proot==NULL||current==m_proot?NULL:GetParent(m_proot,current);    
}


template<typename Type> bool BinaryTree<Type>::Insert(const Type item){
    BinTreeNode<Type> *pstart=m_proot,*newnode=new BinTreeNode<Type>(item);
    if(m_proot==NULL){
        m_proot=newnode;
        return 1;
    }
    while(1){
        if(item==pstart->m_data){
            cout<<"The item "<<item<<" is exist!"<<endl;
            return 0;
        }
        if(item<pstart->m_data){
            if(pstart->m_pleft==NULL){
                pstart->m_pleft=newnode;
                return 1;
            }
            pstart=pstart->m_pleft;    //if less than the node then insert to the left subtree
        }
        else{
            if(pstart->m_pright==NULL){
                pstart->m_pright=newnode;
                return 1;
            }
            pstart=pstart->m_pright;//if more than the node then insert to the right subtree
        }
    }
}

template<typename Type> BinTreeNode<Type>* BinaryTree<Type>::Find(const Type item) const{
    BinTreeNode<Type> *pstart=m_proot;
    while(pstart){
        if(item==pstart->m_data){
            return pstart;
        }
        if(item<pstart->m_data){
            pstart=pstart->m_pleft;    //if less than the node then find in the left subtree
        }
        else{
            pstart=pstart->m_pright;//if more than the node then find in the right subtree
        }
    }
    return NULL;
}

template<typename Type> void BinaryTree<Type>::Print(BinTreeNode<Type> *start, int n){
    if(start==NULL){
        for(int i=0;i<n;i++){
            cout<<"     ";
        }
        cout<<"NULL"<<endl;
        return;
    }
    Print(start->m_pright,n+1);    //print the right subtree
    for(int i=0;i<n;i++){    //print blanks with the height of the node
        cout<<"     ";
    }
    if(n>=0){
        cout<<start->m_data<<"--->"<<endl;//print the node
    }
    Print(start->m_pleft,n+1);    //print the left subtree
}

template<typename Type> BinaryTree<Type>& BinaryTree<Type>::operator=(const BinaryTree<Type> copy){
    if(copy.m_proot){
        this->m_stop=copy.m_stop;
    }
    m_proot=m_proot->Copy(copy.m_proot);
    return *this;
}

template<typename Type> ostream& operator<<(ostream& os,BinaryTree<Type>& out){
    out.Print(out.m_proot);
    return os;
}

template<typename Type> istream& operator>>(istream& is,BinaryTree<Type>& in){
    Type item;
    cout<<"initialize the tree:"<<endl<<"Input data(end with "<<in.m_stop<<"!):";
    is>>item;
    while(item!=in.m_stop){    //m_stop is the end of input
        in.Insert(item);
        is>>item;
    }
    return is;
}

template<typename Type> bool operator==(const BinaryTree<Type> s,const BinaryTree<Type> t){
    return equal(s.m_proot,t.m_proot);
}

template<typename Type> void BinaryTree<Type>::InOrder(){
    this->m_proot->InOrder();
}

template<typename Type> void BinaryTree<Type>::PreOrder(){
    this->m_proot->PreOrder();
}

template<typename Type> void BinaryTree<Type>::PostOrder(){
    this->m_proot->PostOrder();
}

template<typename Type> int BinaryTree<Type>::Size(){
    return this->m_proot->Size();

}

template<typename Type> int BinaryTree<Type>::Height(){
    return this->m_proot->Height();
}

Test.cpp

#include <iostream>

using namespace std;

#include "BinaryTree.h"

int main(){
    BinaryTree<int> tree(-1);
//    int init[10]={3,6,0,2,8,4,9,1,5,7};
    int init[30]={17,6,22,29,14,0,21,13,27,18,2,28,8
        ,26,3,12,20,4,9,23,15,1,11,5,19,24,16,7,10,25};
    for(int i=0;i<30;i++){
        tree.Insert(init[i]);
    }
    //cin>>tree;
    cout<<tree<<endl;

    cout<<tree.GetParent(tree.Find(20))->GetData()<<endl;
    cout<<tree.Find(15)->GetRight()->GetData()<<endl;

    cout<<"size="<<tree.Size()<<endl;
    cout<<"height="<<tree.Height()<<endl;

    tree.InOrder();
    cout<<endl<<endl;
    tree.PreOrder();
    cout<<endl<<endl;
    tree.PostOrder();
    cout<<endl<<endl;
    

    BinaryTree<int> tree2=tree;
    cout<<tree2<<endl;

    cout<<tree2.GetParent(tree2.Find(20))->GetData()<<endl;
    cout<<tree2.Find(15)->GetRight()->GetData()<<endl;

    cout<<(tree==tree2)<<endl;
    return 0;
}
12、线索二叉树

ThreadNode.h

template<typename Type> class ThreadTree;
template<typename Type> class ThreadInorderIterator;

template<typename Type> class ThreadNode{
public:
    friend class ThreadTree<Type>;
    friend class ThreadInorderIterator<Type>;
    ThreadNode():m_nleftthread(1),m_nrightthread(1){
        m_pleft=this;
        m_pright=this;
    }
    ThreadNode(const Type item):m_data(item),m_pleft(NULL),m_pright(NULL)
        ,m_nleftthread(0),m_nrightthread(0){}

private:
    int m_nleftthread,m_nrightthread;
    ThreadNode<Type> *m_pleft,*m_pright;
    Type m_data;
};

ThreadTree.h

#include "ThreadNode.h"

template<typename Type> class ThreadInorderIterator;

template<typename Type> class ThreadTree{
public:
    friend class ThreadInorderIterator<Type>;
    ThreadTree():m_proot(new ThreadNode<Type>()){}

ThreadInorderIterator.h

#include "ThreadTree.h"

template<typename Type> class ThreadInorderIterator{
public:
    ThreadInorderIterator(ThreadTree<Type> &tree):m_ptree(tree),m_pcurrent(tree.m_proot){
        //InThread(m_ptree.m_proot->m_pleft,m_ptree.m_proot);
    }
    
    ThreadNode<Type> *First();
    ThreadNode<Type> *Prior();
    ThreadNode<Type> *Next();

    void Print();
    void Print(ThreadNode<Type> *start, int n=0);
    void InOrder();
    void InsertLeft(ThreadNode<Type> *left);
    void InsertRight(ThreadNode<Type> *right);
    ThreadNode<Type> *GetParent(ThreadNode<Type> *current);

    
private:
    ThreadTree<Type> &m_ptree;
    ThreadNode<Type> *m_pcurrent;
    void InThread(ThreadNode<Type> *current,ThreadNode<Type> *pre);
};

template<typename Type> void ThreadInorderIterator<Type>::InThread(
    ThreadNode<Type> *current, ThreadNode<Type> *pre){
    if(current!=m_ptree.m_proot){
        InThread(current->m_pleft,pre);
        if(current->m_pleft==NULL){
            current->m_pleft=pre;
            current->m_nleftthread=1;
        }
        if(pre->m_pright==NULL){
            pre->m_pright=current;
            pre->m_nrightthread=1;
        }

        pre=current;
        InThread(current->m_pright,pre);
    }
}

template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::First(){
    while(m_pcurrent->m_nleftthread==0){
        m_pcurrent=m_pcurrent->m_pleft;
    }
    return m_pcurrent;
}

template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::Prior(){
    ThreadNode<Type> *pmove=m_pcurrent->m_pleft;
    if(0==m_pcurrent->m_nleftthread){
        while(0==pmove->m_nrightthread){
            pmove=pmove->m_pright;
        }
    }
    m_pcurrent=pmove;
    if(m_pcurrent==m_ptree.m_proot){
        return NULL;
    }
    return m_pcurrent;
}

template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::Next(){
    ThreadNode<Type> *pmove=m_pcurrent->m_pright;
    if(0==m_pcurrent->m_nrightthread){
        while(0==pmove->m_nleftthread){
            pmove=pmove->m_pleft;
        }
    }
    m_pcurrent=pmove;
    if(m_pcurrent==m_ptree.m_proot){
        return NULL;
    }
    return m_pcurrent;
}

template<typename Type> void ThreadInorderIterator<Type>::InOrder(){
    ThreadNode<Type> *pmove=m_ptree.m_proot;
    while(pmove->m_pleft!=m_ptree.m_proot){
        pmove=pmove->m_pleft;
    }
    m_pcurrent=pmove;
    cout<<"root";
    while(pmove!=m_ptree.m_proot&&pmove){
        cout<<"--->"<<pmove->m_data;
        pmove=this->Next();
    }
    cout<<"--->end";
}

template<typename Type> void ThreadInorderIterator<Type>::InsertLeft(ThreadNode<Type> *left){
    left->m_pleft=m_pcurrent->m_pleft;
    left->m_nleftthread=m_pcurrent->m_nleftthread;
    left->m_pright=m_pcurrent;
    left->m_nrightthread=1;
    m_pcurrent->m_pleft=left;
    m_pcurrent->m_nleftthread=0;
    if(0==left->m_nleftthread){
        m_pcurrent=left->m_pleft;
        ThreadNode<Type> *temp=First();
        temp->m_pright=left;
    }
    m_pcurrent=left;
}

template<typename Type> void ThreadInorderIterator<Type>::InsertRight(ThreadNode<Type> *right){
    right->m_pright=m_pcurrent->m_pright;
    right->m_nrightthread=m_pcurrent->m_nrightthread;
    right->m_pleft=m_pcurrent;
    right->m_nleftthread=1;
    m_pcurrent->m_pright=right;
    m_pcurrent->m_nrightthread=0;
    if(0==right->m_nrightthread){
        m_pcurrent=right->m_pright;
        ThreadNode<Type> *temp=First();
        temp->m_pleft=right;
    }
    m_pcurrent=right;
}

template<typename Type> ThreadNode<Type>* ThreadInorderIterator<Type>::GetParent(
    ThreadNode<Type> *current){
    ThreadNode<Type> *pmove=current;
    while(0==pmove->m_nleftthread){
        pmove=pmove->m_pleft;
    }
    pmove=pmove->m_pleft;
    if(pmove==m_ptree.m_proot){
        if(pmove->m_pleft==current){
            return NULL;
        }
    }
    if(pmove->m_pright==current){
        return pmove;
    }
    pmove=pmove->m_pright;
    while(pmove->m_pleft!=current){
        pmove=pmove->m_pleft;
    }
    return pmove;
}

template<typename Type> void ThreadInorderIterator<Type>::Print(ThreadNode<Type> *start, int n){
    if(start->m_nleftthread&&start->m_nrightthread){
    for(int i=0;i<n;i++){
        cout<<"     ";
    }
    if(n>=0){
        cout<<start->m_data<<"--->"<<endl;
    }

        return;
    }
    if(start->m_nrightthread==0){
        Print(start->m_pright,n+1);
    }
    for(int i=0;i<n;i++){
        cout<<"     ";
    }
    if(n>=0){
        cout<<start->m_data<<"--->"<<endl;
    }
    if(start->m_nleftthread==0){
        Print(start->m_pleft,n+1);
    }
}

template<typename Type> void ThreadInorderIterator<Type>::Print(){
    Print(m_ptree.m_proot->m_pleft);
}

test.cpp

#include <iostream>

using namespace std;

#include "ThreadInorderIterator.h"

int main(){
    ThreadTree<int> tree;
    ThreadInorderIterator<int> threadtree(tree);
    int init[10]={3,6,0,2,8,4,9,1,5,7};
    for(int i=0;i<10;){
        threadtree.InsertLeft(new ThreadNode<int>(init[i++]));
        threadtree.InsertRight(new ThreadNode<int>(init[i++]));
    }
    threadtree.Print();
    cout<<endl<<endl;

    threadtree.InOrder();
    return 0;
}
    
private:
    ThreadNode<Type> *m_proot;
};
13、堆

MinHeap.h

template<typename Type> class MinHeap{
public:
    MinHeap(int size):m_nMaxSize(size > defaultsize ? size : defaultsize)
            ,m_pheap(new Type[m_nMaxSize]),m_ncurrentsize(0){}
    MinHeap(Type heap[],int n);        //initialize heap by a array
    ~MinHeap(){
        delete[] m_pheap;
    }

public:
    bool Insert(const Type item);    //insert element
    bool Delete(const Type item);    //delete element
    bool IsEmpty() const{            
        return m_ncurrentsize == 0;
    }
    bool IsFull() const{
        reutrn m_ncurrentsize == m_nMaxSize;
    }
    void Print(const int start=0, int n=0);            

private:
    //adjust the elements of the child tree with the root of start from top to bottom
    void Adjust(const int start, const int end);    

private:
    static const int defaultsize = 100;
    const int m_nMaxSize;    
    Type *m_pheap;
    int m_ncurrentsize;
};

template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){
    int i = start,j = i*2+1;    //get the position of the child of i
    Type temp=m_pheap[i];
    while(j <= end){    
        if(j<end && m_pheap[j]>m_pheap[j+1]){   //left>right
            j++;
        }
        if(temp <= m_pheap[j]){ //adjust over
            break;
        }
        else{   //change the parent and the child, then adjust the child
            m_pheap[i] = m_pheap[j];
            i = j;
            j = 2*i+1;
        }
    }
    m_pheap[i] = temp;
}

template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(
        n > defaultsize ? n : defaultsize){
    m_pheap = new Type[m_nMaxSize];
    for(int i=0; i<n; i++){
        m_pheap[i] = heap[i];
    }
    m_ncurrentsize = n;
    int pos=(n-2)/2;    //Find the last child tree which has more than one element;
    while(pos>=0){
        Adjust(pos, n-1);
        pos--;
    }
}

template<typename Type> bool MinHeap<Type>::Insert(const Type item){
    if(m_ncurrentsize == m_nMaxSize){
        cerr<<"Heap Full!"<<endl;
        return 0;
    }
    m_pheap[m_ncurrentsize] = item;
    int j = m_ncurrentsize, i = (j-1)/2;    //get the position of the parent of j
    Type temp = m_pheap[j];
    while(j > 0){   //adjust from bottom to top
        if(m_pheap[i] <= temp){
            break;
        }
        else{
            m_pheap[j] = m_pheap[i];
            j = i;
            i = (j-1)/2;
        }
    }
    m_pheap[j] = temp;
    m_ncurrentsize++;
    return 1;
}

template<typename Type> bool MinHeap<Type>::Delete(const Type item){
    if(0 == m_ncurrentsize){
        cerr<<"Heap Empty!"<<endl;
        return 0;
    }
    for(int i=0; i<m_ncurrentsize; i++){
        if(m_pheap[i] == item){
            m_pheap[i] = m_pheap[m_ncurrentsize-1]; //filled with the last element
            Adjust(i,m_ncurrentsize-2);     //adjust the tree with start of i
            m_ncurrentsize--;
            i=0;
        }
    }
    return 1;
}

template<typename Type> void MinHeap<Type>::Print(const int start, int n){
    if(start >= m_ncurrentsize){
        return;
    }
    Print(start*2+2, n+1);  //print the right child tree

    for(int i=0; i<n; i++){
        cout<<"    ";
    }
    cout<< m_pheap[start] << "--->" << endl;

    Print(start*2+1, n+1);  //print the left child tree
}

test.cpp

#include <iostream>

using namespace std;

#include "MinHeap.h"

int main(){
    int init[30]={17,6,22,29,14,0,21,13,27,18,2,28,8
            ,26,3,12,20,4,9,23,15,1,11,5,19,24,16,7,10,25};
    MinHeap<int> heap(init,30);
    heap.Print();
    cout<<endl<<endl<<endl;

    heap.Insert(20);
    heap.Print();
    cout<<endl<<endl<<endl;
    
    heap.Delete(20);
    heap.Print();
    cout<<endl<<endl<<endl;
    return 0;
}
14、哈夫曼树

BinTreeNode.h

template<typename Type> class BinaryTree;

template<typename Type> void Huffman(Type *, int, BinaryTree<Type> &);

template<typename Type> class BinTreeNode{
public:
    friend class BinaryTree<Type>;
    friend void Huffman<Type>(Type *, int, BinaryTree<Type> &);
    BinTreeNode():m_pleft(NULL),m_pright(NULL){}
    BinTreeNode(Type item,BinTreeNode<Type> *left=NULL,BinTreeNode<Type> *right=NULL)
        :m_data(item),m_pleft(left),m_pright(right){}
    void Destroy(){        //destroy the tree with the root of the node
        if(this!=NULL){
            this->m_pleft->Destroy();
            this->m_pright->Destroy();
            delete this;
        }
    }
    Type GetData(){
        return m_data;
    }
    BinTreeNode<Type> *Copy(const BinTreeNode<Type> *copy);    //copy the node

private:
    BinTreeNode<Type> *m_pleft,*m_pright;
    Type m_data;
};

template<typename Type> BinTreeNode<Type>* BinTreeNode<Type>::Copy(const BinTreeNode<Type> *copy){
    if(copy==NULL){
        return NULL;
    }

    BinTreeNode<Type> *temp=new BinTreeNode<Type>(copy->m_data);
    temp->m_pleft=Copy(copy->m_pleft);
    temp->m_pright=Copy(copy->m_pright);
    return temp;
}

BinaryTree.h

#include "BinTreeNode.h"

template<typename Type> void Huffman(Type *, int, BinaryTree<Type> &);

template<typename Type> class BinaryTree{
public:
    
    BinaryTree(BinaryTree<Type> &bt1, BinaryTree<Type> &bt2){
        m_proot = new BinTreeNode<Type>(bt1.m_proot->m_data 
            + bt2.m_proot->m_data, bt1.m_proot, bt2.m_proot);
    }
    BinaryTree(Type item){
        m_proot = new BinTreeNode<Type>(item);
    }
    BinaryTree(const BinaryTree<Type> ?){
        this->m_proot = copy.m_proot;
    }
    BinaryTree(){
        m_proot = NULL;
    }
    void Destroy(){
        m_proot->Destroy();
    }
    ~BinaryTree(){
//        m_proot->Destroy();
    }
    
    BinaryTree<Type>& operator=(BinaryTree<Type> copy);    //evaluate node
    friend void Huffman<Type>(Type *, int, BinaryTree<Type> &);
    friend bool operator < <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);
    friend bool operator > <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);
    friend bool operator <= <Type>(BinaryTree<Type> &l, BinaryTree<Type> & r);
    friend ostream& operator<< <Type>(ostream& ,BinaryTree<Type>&);    //output the data
private:
    BinTreeNode<Type> *m_proot;
    void Print(BinTreeNode<Type> *start,int n=0);    //print the tree with the root of start
};

template<typename Type> bool operator <(BinaryTree<Type> &l, BinaryTree<Type> &r){
    return l.m_proot->GetData() < r.m_proot->GetData();
}

template<typename Type> bool operator >(BinaryTree<Type> &l, BinaryTree<Type> &r){
    return l.m_proot->GetData() > r.m_proot->GetData();
}

template<typename Type> bool operator <=(BinaryTree<Type> &l, BinaryTree<Type> &r){
    return l.m_proot->GetData() <= r.m_proot->GetData();
}


template<typename Type> void BinaryTree<Type>::Print(BinTreeNode<Type> *start, int n){
    if(start==NULL){
        for(int i=0;i<n;i++){
            cout<<"     ";
        }
        cout<<"NULL"<<endl;
        return;
    }
    Print(start->m_pright,n+1);    //print the right subtree
    for(int i=0;i<n;i++){    //print blanks with the height of the node
        cout<<"     ";
    }
    if(n>=0){
        cout<<start->m_data<<"--->"<<endl;//print the node
    }
    Print(start->m_pleft,n+1);    //print the left subtree
}

template<typename Type> ostream& operator<<(ostream& os,BinaryTree<Type>& out){
    out.Print(out.m_proot);
    return os;
}

template<typename Type> BinaryTree<Type>& BinaryTree<Type>::operator=(BinaryTree<Type> copy){
    m_proot=m_proot->Copy(copy.m_proot);
    return *this;
}

MinHeap.h

template<typename Type> class MinHeap{
public:
    MinHeap(Type heap[],int n);        //initialize heap by a array
    ~MinHeap(){
        delete[] m_pheap;
    }

public:
    bool Insert(const Type item);
    bool DeleteMin(Type &first);

private:
    void Adjust(const int start, const int end);    //adjust the elements from start to end


private:
    const int m_nMaxSize;    
    Type *m_pheap;
    int m_ncurrentsize;
};

template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){
    int i = start,j = i*2+1;
    Type temp=m_pheap[i];
    while(j <= end){
        if(j<end && m_pheap[j]>m_pheap[j+1]){
            j++;
        }
        if(temp <= m_pheap[j]){
            break;
        }
        else{
            m_pheap[i] = m_pheap[j];
            i = j;
            j = 2*i+1;
        }
    }
    m_pheap[i] = temp;
}

template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(n){
    m_pheap = new Type[m_nMaxSize];
    for(int i=0; i<n; i++){
        m_pheap[i] = heap[i];
    }
    m_ncurrentsize = n;
    int pos=(n-2)/2;    //Find the last tree which has more than one element;
    while(pos>=0){
        Adjust(pos, n-1);
        pos--;
    }
}

template<typename Type> bool MinHeap<Type>::DeleteMin(Type &first){
    first = m_pheap[0];
    m_pheap[0] = m_pheap[m_ncurrentsize-1];
    m_ncurrentsize--;
    Adjust(0, m_ncurrentsize-1);
    return 1;
}

template<typename Type> bool MinHeap<Type>::Insert(const Type item){
    if(m_ncurrentsize == m_nMaxSize){
        cerr<<"Heap Full!"<<endl;
        return 0;
    }
    m_pheap[m_ncurrentsize] = item;
    int j = m_ncurrentsize, i = (j-1)/2;
    Type temp = m_pheap[j];
    while(j > 0){
        if(m_pheap[i] <= temp){
            break;
        }
        else{
            m_pheap[j] = m_pheap[i];
            j = i;
            i = (j-1)/2;
        }
    }
    m_pheap[j] = temp;
    m_ncurrentsize++;
    return 1;
}

Huffman.h

#include "BinaryTree.h"
#include "MinHeap.h"

template<typename Type> void Huffman(Type *elements, int n, BinaryTree<Type> &tree){
    BinaryTree<Type> first, second;
    BinaryTree<Type> node[20];
    for (int i=0; i<n; i++){
        node[i].m_proot = new BinTreeNode<Type>(elements[i]);
    }
    MinHeap<BinaryTree<Type> > heap(node, n);

    for (int i=0; i<n-1; i++){
        heap.DeleteMin(first);
        heap.DeleteMin(second);
        
        //using the first and the second minimize element create new tree
        if (first.m_proot->GetData() == second.m_proot->GetData()){
            tree = *(new BinaryTree<Type>(second, first));
        }
        else {
            tree = *(new BinaryTree<Type>(first, second));
        }

        heap.Insert(tree);
    }
}

Test.cpp

#include <iostream>

using namespace std;

#include "Huffman.h"

int main(){
    BinaryTree<int> tree;
    int init[10]={3,6,0,2,8,4,9,1,5,7};
    Huffman(init,10,tree);
    cout << tree;
    tree.Destroy();
    return 0;
}
15、树

QueueNode.h

template<typename Type> class LinkQueue;

template<typename Type> class QueueNode{
private:
    friend class LinkQueue<Type>;
    QueueNode(const Type item,QueueNode<Type> *next=NULL)
        :m_data(item),m_pnext(next){}
private:
    Type m_data;
    QueueNode<Type> *m_pnext;
};

LinkQueue.h

#include "QueueNode.h"

template<typename Type> class LinkQueue{
public:
    LinkQueue():m_prear(NULL),m_pfront(NULL){}
    ~LinkQueue(){
        MakeEmpty();
    }
    void Append(const Type item);
    Type Delete();
    Type GetFront();
    void MakeEmpty();
    bool IsEmpty() const{
        return m_pfront==NULL;
    }
    void Print();

private:
    QueueNode<Type> *m_prear,*m_pfront;
};

template<typename Type> void LinkQueue<Type>::MakeEmpty(){
    QueueNode<Type> *pdel;
    while(m_pfront){
        pdel=m_pfront;
        m_pfront=m_pfront->m_pnext;
        delete pdel;
    }
}

template<typename Type> void LinkQueue<Type>::Append(const Type item){
    if(m_pfront==NULL){
        m_pfront=m_prear=new QueueNode<Type>(item);
    }
    else{
        m_prear=m_prear->m_pnext=new QueueNode<Type>(item);
    }
}

template<typename Type> Type LinkQueue<Type>::Delete(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    QueueNode<Type> *pdel=m_pfront;
    Type temp=m_pfront->m_data;
    m_pfront=m_pfront->m_pnext;
    delete pdel;
    return temp;
}

template<typename Type> Type LinkQueue<Type>::GetFront(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    return m_pfront->m_data;
}

template<typename Type> void LinkQueue<Type>::Print(){
    QueueNode<Type> *pmove=m_pfront;
    cout<<"front";
    while(pmove){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }
    cout<<"--->rear"<<endl<<endl<<endl;
}

TreeNode.h

template<typename Type> class Tree;

template<typename Type> class TreeNode{
public:
    friend class Tree<Type>;

private:
    Type m_data;
    TreeNode<Type> *m_pfirst,*m_pnext;
    TreeNode():m_pfirst(NULL), m_pnext(NULL){}
    TreeNode(Type item, TreeNode<Type> *first = NULL, TreeNode<Type> *next = NULL)
        :m_data(item), m_pfirst(first), m_pnext(next){}
};

Tree.h

#include "TreeNode.h"
#include "LinkQueue.h"

template<typename Type> class Tree{
public:
    Tree():m_proot(NULL), m_pcurrent(NULL){}
public:
    TreeNode<Type> *GetCurrent(){    //Get the current node
        return m_pcurrent;
    }
    void SetCurrent(TreeNode<Type> *current){    //set the current node
        m_pcurrent = current;
    }
    bool Insert(Type item);        //insert an new node to current node
    void Remove(Type item);        //delete the node whose data is equal to item
    void Remove(TreeNode<Type> *current);    //delete the node
    bool Find(Type item);        //find the node whose data is equal to item
    void PrintChild(TreeNode<Type> *current);    //print the child tree
    TreeNode<Type> *Parent(TreeNode<Type> *current);    //get the parent

    void Print();                //print the tree
    void PreOrder(TreeNode<Type> *root);    //ordering the tree by visiting the root first
    void PostOrder(TreeNode<Type> *root);    //ordering the tree by visiting the root last
    void LevelOrder(TreeNode<Type> *root);    //ordering the tree by level
    void PreOrder();
    void PostOrder();
    void LevelOrder();

private:
   TreeNode<Type> *m_proot,*m_pcurrent;    
    bool Find(TreeNode<Type> *root, Type item);
    void Remove(TreeNode<Type> *root, Type item);
    TreeNode<Type> *Parent(TreeNode<Type> *root, TreeNode<Type> *current);
    void Print(TreeNode<Type> *start, int n=0);
};

template<typename Type> bool Tree<Type>::Insert(Type item){
    TreeNode<Type> *newnode = new TreeNode<Type>(item);
    if (NULL == newnode){
        cout << "Application Error!" <<endl;
        exit(1);
    }
    if (NULL == m_proot){
        m_proot = newnode;
        m_pcurrent = m_proot;
        return 1;
    }
    if (NULL == m_pcurrent){
        cerr << "insert error!" <<endl;
        return 0;
    }

    if(NULL == m_pcurrent->m_pfirst){
        m_pcurrent->m_pfirst = newnode;
        m_pcurrent = newnode;
        return 1;
    }
    TreeNode<Type> *pmove = m_pcurrent->m_pfirst;
    while(pmove->m_pnext){
        pmove = pmove->m_pnext;
    }
    pmove->m_pnext = newnode;
    m_pcurrent = newnode;
    return 1;

}

template<typename Type> void Tree<Type>::Remove(TreeNode<Type> *current){
    if(NULL == current){
        return;
    }
    TreeNode<Type> *temp = Parent(current);
    if(NULL == temp){
        TreeNode<Type> *pmove = current->m_pfirst;
        if(NULL != pmove->m_pfirst){
            pmove=pmove->m_pfirst;
            while(pmove->m_pnext){
                pmove = pmove->m_pnext;
            }
            pmove->m_pnext = current->m_pfirst->m_pnext;
            current->m_pfirst->m_pnext = NULL;
        }
        else{
            pmove->m_pfirst = pmove->m_pnext;
        }
        m_proot = current->m_pfirst;
    }
    else{
        if(temp->m_pfirst == current){
            TreeNode<Type> *pmove = current->m_pfirst;
            if (pmove){
                while (pmove->m_pnext){
                    pmove = pmove->m_pnext;
                }
                pmove->m_pnext = current->m_pnext;
            }
            else{
                current->m_pfirst = current->m_pnext;
            }

        }
        else{
            TreeNode<Type> *pmove = temp->m_pfirst;
            while(pmove->m_pnext != current){
                pmove = pmove->m_pnext;
            }
            pmove->m_pnext = current->m_pnext;
            while(pmove->m_pnext){
                pmove = pmove->m_pnext;
            }
            pmove->m_pnext = current->m_pfirst;
        }
    }
    delete current;
}

template<typename Type> void Tree<Type>::Remove(TreeNode<Type> *root, Type item){
    if(NULL == root){
        return;
    }
    if(root->m_pfirst){
        TreeNode<Type> *pmove=root->m_pfirst;
        while(pmove){
            Remove(pmove, item);
            pmove = pmove->m_pnext;
        }
    }    
    if(root->m_data == item){
        Remove(root);
    }

}
template<typename Type> void Tree<Type>::Remove(Type item){
    return Remove(m_proot, item);
}

template<typename Type> TreeNode<Type>* Tree<Type>::Parent(
    TreeNode<Type> *root, TreeNode<Type> *current){
        if(NULL == root){
            return NULL;
        }
        TreeNode<Type> *pmove=root->m_pfirst,*temp;
        if(NULL != pmove){
            while(pmove){
                if(pmove == current){
                    return root;
                }
                pmove = pmove->m_pnext;
            }
        }
        pmove = root->m_pfirst;
        while(pmove){
            temp = Parent(pmove, current);
            if(temp){
                return temp;
            }
            pmove = pmove->m_pnext;
        }
        return NULL;
}

template<typename Type> TreeNode<Type>* Tree<Type>::Parent(TreeNode<Type> *current){
    return Parent(m_proot,current);
}

template<typename Type> void Tree<Type>::PrintChild(TreeNode<Type> *current){
    TreeNode<Type> *pmove = current->m_pfirst;
    cout<<"first";
    if(NULL != pmove){
        cout<<"--->"<<pmove->m_data;
    }
    while(pmove->m_pnext){
        cout<<"--->"<<pmove->m_data;
        pmove = pmove->m_pnext;
    }
}

template<typename Type> bool Tree<Type>::Find(TreeNode<Type> *root, Type item){
    if (root->m_data == item){
        return 1;
    }
    if (NULL == root){
        return 0;
    }
    TreeNode<Type> *pmove=root->m_pfirst;
    if (NULL == pmove){
        return 0;
    }
    while (pmove){
        if (Find(pmove, item)){
            return 1;
        }
        pmove = pmove->m_pnext;
    }
    return 0;
}

template<typename Type> bool Tree<Type>::Find(Type item){
    return Find(m_proot,item);
}

template<typename Type> void Tree<Type>::Print(TreeNode<Type> *start, int n = 0){
    if (NULL == start){
        for (int i=0; i<n; i++){
            cout << "     ";
        }
        cout << "NULL" << endl;
        return;
    }
    TreeNode<Type> *pmove = start->m_pfirst;
    Print(pmove, n+1);

    for (int i=0; i<n; i++){
        cout << "     ";
    }
    cout << start->m_data << "--->" <<endl;

    if (NULL == pmove){   
        return;
    }
    pmove = pmove->m_pnext;
    while (pmove){
        Print(pmove, n+1);
        pmove = pmove->m_pnext;
    }
}

template<typename Type> void Tree<Type>::Print(){
    Print(m_proot);
}

template<typename Type> void Tree<Type>::PreOrder(TreeNode<Type> *root){
    if (NULL == root){
        return;
    }
    cout << root->m_data;
    TreeNode<Type> *pmove = root->m_pfirst;
    while (pmove){
        PreOrder(pmove);
        pmove = pmove->m_pnext;
    }
}

template<typename Type> void Tree<Type>::PostOrder(TreeNode<Type> *root){
    if (NULL == root){
        return;
    }
    TreeNode<Type> *pmove = root->m_pfirst;
    while (pmove){
        PostOrder(pmove);
        pmove = pmove->m_pnext;
    }
    cout << root->m_data;
}

template<typename Type> void Tree<Type>::PreOrder(){
    PreOrder(m_proot);
}

template<typename Type> void Tree<Type>::PostOrder(){
    PostOrder(m_proot);
}

template<typename Type> void Tree<Type>::LevelOrder(TreeNode<Type> *root){    //using queue
    LinkQueue<TreeNode<Type> *> queue;
    TreeNode<Type> *pmove, *ptemp;
    if (root != NULL){
        queue.Append(root);
        while (!queue.IsEmpty()){
            ptemp = queue.Delete();
            cout << ptemp->m_data;
            pmove = ptemp->m_pfirst;
            while(pmove){
                queue.Append(pmove);
                pmove = pmove->m_pnext;
            }
        }
    }
}

template<typename Type> void Tree<Type>::LevelOrder(){
    LevelOrder(m_proot);
}

test.cpp

#include <iostream>

using namespace std;

#include "Tree.h"

int main(){
    Tree<int> tree;
    int init[10]={3,6,0,2,8,4,9,1,5,7};
    for (int i=0; i<10; i++){
        tree.Insert(init[i]);
        if (1 == i % 2){
            tree.SetCurrent(tree.Parent(tree.GetCurrent()));
        }
    }
    tree.Print();
    cout << endl <<endl << endl;
    
    tree.Remove(3);
    tree.Print();
    cout << endl <<endl << endl;

    cout << tree.Find(5) << endl << tree.Find(11) <<endl;
    
    tree.PreOrder();
    cout << endl;
    tree.PostOrder();
    cout << endl;
    tree.LevelOrder();
    return 0;
}
16、B+树

BTreeNode.h

template<typename Type> class BTree;

template<typename Type> class BTreeNode{
public:
    friend BTree<Type>;
    BTreeNode(): m_nMaxSize(0), m_ptr(NULL), m_pparent(NULL){}
    BTreeNode(int size): m_nsize(0), m_nMaxSize(size), m_pparent(NULL){
        m_pkey = new Type[size+1];
        m_ptr = new BTreeNode<Type> *[size+1];
        for (int i=0; i<=size; i++){
            m_ptr[i] = NULL;
            m_pkey[i] = this->m_Infinity;
        }
    }
    void Destroy(BTreeNode<Type> *root);
    ~BTreeNode(){
        if (m_nMaxSize){
            delete[] m_pkey;
            for (int i=0; i<=m_nMaxSize; i++){
                m_ptr[i] = NULL;
            }
        }
    }
    bool IsFull(){
        return m_nsize == m_nMaxSize;
    }
    Type GetKey(int i){
        if (this){
            return this->m_pkey[i];
        }
        return -1;
    }

private:
    int m_nsize;
    int m_nMaxSize;     //the Max Size of key
    Type *m_pkey;
    BTreeNode<Type> *m_pparent;
    BTreeNode<Type> **m_ptr;
    static const Type m_Infinity = 10000;
};

template<typename Type> struct Triple{
    BTreeNode<Type> *m_pfind;
    int m_nfind;
    bool m_ntag;
};

template<typename Type> void BTreeNode<Type>::Destroy(BTreeNode<Type> *root){
    if (NULL == root){
        return;
    }
    for (int i=0; i<root->m_nsize; i++){
        Destroy(root->m_ptr[i]);
    }
    delete root;
}

BTree.h

#include "BTreeNode.h"


template<typename Type> class BTree{
public:
    BTree(int size): m_nMaxSize(size), m_proot(NULL){}
    ~BTree();
    Triple<Type> Search(const Type item);
    int Size();
    int Size(BTreeNode<Type> *root);
    bool Insert(const Type item);   //insert item
    bool Remove(const Type item);   //delete item
    void Print();                   //print the BTree
    BTreeNode<Type> *GetParent(const Type item);    

private:
    //insert the pright and item to pinsert in the nth place;
    void InsertKey(BTreeNode<Type> *pinsert, int n, const Type item, BTreeNode<Type> *pright); 

    void PreMove(BTreeNode<Type> *root, int n); //move ahead
    
    //merge the child tree
    void Merge(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, BTreeNode<Type> *pright, int n); 

    //adjust with the parent and the left child tree
    void LeftAdjust(BTreeNode<Type> *pright, BTreeNode<Type> *pparent, int min, int n); 

    //adjust with the parent and the left child tree
    void RightAdjust(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, int min, int n); 

    void Print(BTreeNode<Type> *start, int n = 0);
    
private:
    BTreeNode<Type> *m_proot;
    const int m_nMaxSize;
};


template<typename Type> BTree<Type>::~BTree(){
    m_proot->Destroy(m_proot);
}
template<typename Type> Triple<Type> BTree<Type>::Search(const Type item){
    Triple<Type> result;
    BTreeNode<Type> *pmove = m_proot, *parent = NULL;
    int i = 0;
    while (pmove){
        i = -1;
        while (item > pmove->m_pkey[++i]); //find the suit position
        if (pmove->m_pkey[i] == item){
            result.m_pfind = pmove;
            result.m_nfind = i;
            result.m_ntag = 1;
            return result;
        }
        parent = pmove;
        pmove = pmove->m_ptr[i];    //find in the child tree
    }
    result.m_pfind = parent;
    result.m_nfind = i;
    result.m_ntag = 0;
    return result;
}

template<typename Type> void BTree<Type>::InsertKey(BTreeNode<Type> *pinsert, int n, const Type item, BTreeNode<Type> *pright){
    pinsert->m_nsize++;
    for (int i=pinsert->m_nsize; i>n; i--){
        pinsert->m_pkey[i] = pinsert->m_pkey[i-1];
        pinsert->m_ptr[i+1] = pinsert->m_ptr[i];
    }
    pinsert->m_pkey[n] = item;
    pinsert->m_ptr[n+1] = pright;

    if (pinsert->m_ptr[n+1]){       //change the right child tree‘s parent
        pinsert->m_ptr[n+1]->m_pparent = pinsert;
        for (int i=0; i<=pinsert->m_ptr[n+1]->m_nsize; i++){
            if (pinsert->m_ptr[n+1]->m_ptr[i]){
                pinsert->m_ptr[n+1]->m_ptr[i]->m_pparent = pinsert->m_ptr[n+1];
            }
        }
    }
    
}
template<typename Type> bool BTree<Type>::Insert(const Type item){
    if (NULL == m_proot){       //insert the first node
        m_proot = new BTreeNode<Type>(m_nMaxSize);
        m_proot->m_nsize = 1;
        m_proot->m_pkey[1] = m_proot->m_pkey[0];
        m_proot->m_pkey[0] = item;
        m_proot->m_ptr[0] = m_proot->m_ptr[1] =NULL;
        return 1;
    }
    Triple<Type> find = this->Search(item); //search the position
    if (find.m_ntag){
        cerr << "The item is exist!" << endl;
        return 0;
    }
    BTreeNode<Type> *pinsert = find.m_pfind, *newnode;
    BTreeNode<Type> *pright = NULL, *pparent;
    Type key = item;
    int n = find.m_nfind;

    while (1){
        if (pinsert->m_nsize < pinsert->m_nMaxSize-1){  //There is some space
            InsertKey(pinsert, n, key, pright);
            return 1;
        }

        int m = (pinsert->m_nsize + 1) / 2;     //get the middle item
        InsertKey(pinsert, n, key, pright);     //insert first, then break up
        newnode = new BTreeNode<Type>(this->m_nMaxSize);//create the newnode for break up

        //break up
        for (int i=m+1; i<=pinsert->m_nsize; i++){      
            newnode->m_pkey[i-m-1] = pinsert->m_pkey[i];
            newnode->m_ptr[i-m-1] = pinsert->m_ptr[i];
            pinsert->m_pkey[i] = pinsert->m_Infinity;
            pinsert->m_ptr[i] = NULL;
        }
        newnode->m_nsize = pinsert->m_nsize - m - 1;
        pinsert->m_nsize = m;

        for (int i=0; i<=newnode->m_nsize; i++){    //change the parent
            if (newnode->m_ptr[i]){
                newnode->m_ptr[i]->m_pparent = newnode;
                for (int j=0; j<=newnode->m_ptr[i]->m_nsize; j++){
                    if (newnode->m_ptr[i]->m_ptr[j]){
                        newnode->m_ptr[i]->m_ptr[j]->m_pparent = newnode->m_ptr[i];
                    }
                }
            }
        }
        for (int i=0; i<=pinsert->m_nsize; i++){    //change the parent
            if (pinsert->m_ptr[i]){
                pinsert->m_ptr[i]->m_pparent = pinsert;
                for (int j=0; j<=pinsert->m_nsize; j++){
                    if (pinsert->m_ptr[i]->m_ptr[j]){
                        pinsert->m_ptr[i]->m_ptr[j]->m_pparent = pinsert->m_ptr[i];
                    }
                }
            }
        }
        //break up over
        
        key = pinsert->m_pkey[m];
        pright = newnode;
        if (pinsert->m_pparent){    //insert the key to the parent
            pparent = pinsert->m_pparent;
            n = -1;
            pparent->m_pkey[pparent->m_nsize] = pparent->m_Infinity;
            while (key > pparent->m_pkey[++n]);
            newnode->m_pparent = pinsert->m_pparent;
            pinsert = pparent;
        }
        else {              //create new root
            m_proot = new BTreeNode<Type>(this->m_nMaxSize);
            m_proot->m_nsize = 1;
            m_proot->m_pkey[1] = m_proot->m_pkey[0];
            m_proot->m_pkey[0] = key;
            m_proot->m_ptr[0] = pinsert;
            m_proot->m_ptr[1] = pright;
            newnode->m_pparent = pinsert->m_pparent = m_proot;
            return 1;
        }
    }
}

template<typename Type> void BTree<Type>::PreMove(BTreeNode<Type> *root, int n){
    root->m_pkey[root->m_nsize] = root->m_Infinity;
    for (int i=n; i<root->m_nsize; i++){
        root->m_pkey[i] = root->m_pkey[i+1];
        root->m_ptr[i+1] = root->m_ptr[i+2];
    }
    
    root->m_nsize--;
}

template<typename Type> void BTree<Type>::Merge(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, BTreeNode<Type> *pright, int n){
    pleft->m_pkey[pleft->m_nsize] = pparent->m_pkey[n];
    BTreeNode<Type> *ptemp;
    
    for (int i=0; i<=pright->m_nsize; i++){ //merge the two child tree and the parent
        pleft->m_pkey[pleft->m_nsize+i+1] = pright->m_pkey[i];
        pleft->m_ptr[pleft->m_nsize+i+1] = pright->m_ptr[i];
        ptemp = pleft->m_ptr[pleft->m_nsize+i+1];
        if (ptemp){         //change thd right child tree‘s parent
            ptemp->m_pparent = pleft;
            for (int j=0; j<=ptemp->m_nsize; j++){
                if (ptemp->m_ptr[j]){
                    ptemp->m_ptr[j]->m_pparent = ptemp;
                }
            }
        }
    }
    
    pleft->m_nsize = pleft->m_nsize + pright->m_nsize + 1;
    delete pright;
    PreMove(pparent, n);    
//    this->Print();
}

template<typename Type> void BTree<Type>::LeftAdjust(BTreeNode<Type> *pright, BTreeNode<Type> *pparent, int min, int n){
    BTreeNode<Type> *pleft = pparent->m_ptr[n-1], *ptemp;
    if (pleft->m_nsize > min-1){
        for (int i=pright->m_nsize+1; i>0; i--){
            pright->m_pkey[i] = pright->m_pkey[i-1];
            pright->m_ptr[i] = pright->m_ptr[i-1];
        }
        pright->m_pkey[0] = pparent->m_pkey[n-1];
        
        pright->m_ptr[0] = pleft->m_ptr[pleft->m_nsize];
        ptemp = pright->m_ptr[0];
        if (ptemp){     //change the tree‘s parent which is moved
            ptemp->m_pparent = pright;
            for (int i=0; i<ptemp->m_nsize; i++){
                if (ptemp->m_ptr[i]){
                    ptemp->m_ptr[i]->m_pparent = ptemp;
                }
            }
        }
        pparent->m_pkey[n-1] = pleft->m_pkey[pleft->m_nsize-1];
        pleft->m_pkey[pleft->m_nsize] = pleft->m_Infinity;
        pleft->m_nsize--;
        pright->m_nsize++;
    }
    else {
        Merge(pleft, pparent, pright, n-1);
    }
//       this->Print();
}

template<typename Type> void BTree<Type>::RightAdjust(BTreeNode<Type> *pleft, BTreeNode<Type> *pparent, int min, int n){
    BTreeNode<Type> *pright = pparent->m_ptr[1], *ptemp;
    if (pright && pright->m_nsize > min-1){
        pleft->m_pkey[pleft->m_nsize] = pparent->m_pkey[0];
        pparent->m_pkey[0] = pright->m_pkey[0];
        pleft->m_ptr[pleft->m_nsize+1] = pright->m_ptr[0];
        ptemp = pleft->m_ptr[pleft->m_nsize+1];
        if (ptemp){         //change the tree‘s parent which is moved
            ptemp->m_pparent = pleft;
            for (int i=0; i<ptemp->m_nsize; i++){
                if (ptemp->m_ptr[i]){
                    ptemp->m_ptr[i]->m_pparent = ptemp;
                }
            }
        }
        pright->m_ptr[0] = pright->m_ptr[1];
        pleft->m_nsize++;
        PreMove(pright,0);
    }
    else {
        Merge(pleft, pparent, pright, 0);
    }
}


template<typename Type> bool BTree<Type>::Remove(const Type item){
    Triple<Type> result = this->Search(item);
    if (!result.m_ntag){
        return 0;
    }
    BTreeNode<Type> *pdel, *pparent, *pmin;
    int n = result.m_nfind;
    pdel = result.m_pfind;

    if (pdel->m_ptr[n+1] != NULL){  //change into delete leafnode
        pmin = pdel->m_ptr[n+1];
        pparent = pdel;
        while (pmin != NULL){
            pparent = pmin;
            pmin = pmin->m_ptr[0];
        }
        pdel->m_pkey[n] = pparent->m_pkey[0];
        pdel = pparent;
        n = 0;
    }

    PreMove(pdel, n); //delete the node

    int min = (this->m_nMaxSize + 1) / 2;
    while (pdel->m_nsize < min-1){  //if it is not a BTree, then adjust
        n = 0;
        pparent = pdel->m_pparent;
        if (NULL == pparent)
        {
            return 1;
        }
        while (n<= pparent->m_nsize && pparent->m_ptr[n]!=pdel){
            n++;
        }
        if (!n){
            RightAdjust(pdel, pparent, min, n); //adjust with the parent and the right child tree
        }
        else {
            LeftAdjust(pdel, pparent, min, n); //adjust with the parent and the left child tree
        }
        pdel = pparent;
        if (pdel == m_proot){
            break;
        }
    }
    if (!m_proot->m_nsize){         //the root is merged
        pdel = m_proot->m_ptr[0];
        delete m_proot;
        m_proot = pdel;
        m_proot->m_pparent = NULL;
        for (int i=0; i<m_proot->m_nsize; i++){
            if (m_proot->m_ptr[i]){
                m_proot->m_ptr[i]->m_pparent = m_proot;
            }
        }
    }
    return 1;
}

template<typename Type> void BTree<Type>::Print(BTreeNode<Type> *start, int n){
    if (NULL == start){
        return;
    }
    if (start->m_ptr[0]){
        Print(start->m_ptr[0], n+1);    //print the first child tree
    }
    else {
        for (int j=0; j<n; j++){
            cout << "     ";
        }
        cout << "NULL" << endl;
    }

    for (int i=0; i<start->m_nsize; i++){   //print the orther child tree
        for (int j=0; j<n; j++){
            cout << "     ";
        }
        cout << start->m_pkey[i] << "--->" <<endl;
        if (start->m_ptr[i+1]){
            Print(start->m_ptr[i+1], n+1);
        }
        else {
            for (int j=0; j<n; j++){
                cout << "     ";
            }
            cout << "NULL" << endl;
        }
    }
}

template<typename Type> void BTree<Type>::Print(){
    Print(m_proot);
}

template<typename Type> int BTree<Type>::Size(BTreeNode<Type> *root){
    if (NULL == root){
        return 0;
    }
    int size=root->m_nsize;
    for (int i=0; i<=root->m_nsize; i++){
        if (root->m_ptr[i]){
            size += this->Size(root->m_ptr[i]);
        }
    }
    return size;
}

template<typename Type> int BTree<Type>::Size(){
    return this->Size(this->m_proot);
}

template<typename Type> BTreeNode<Type>* BTree<Type>::GetParent(const Type item){
    Triple<Type> result = this->Search(item);
    return result.m_pfind->m_pparent;
}
test.cpp

#include <iostream>
#include <cstdlib>

using namespace std;

#include "BTree.h"

int main(){
    BTree<int> btree(3);
    int init[]={1,3,5,7,4,2,8,0,6,9,29,13,25,11,32,55,34,22,76,45
        ,14,26,33,88,87,92,44,54,23,12,21,99,19,27,57,18,72,124,158,234
    ,187,218,382,122,111,222,333,872,123};
    for (int i=0; i<49; i++){
        btree.Insert(init[i]);

    }
    
    btree.Print();
    cout << endl << endl << endl;
    
    Triple<int> result = btree.Search(13);
    cout << result.m_pfind->GetKey(result.m_nfind) << endl;
    cout << endl << endl << endl;

    for (int i=0; i<49; i++){
        btree.Remove(init[i]);

        btree.Print();
        cout << endl << endl << endl;
                
    }
    
    return 0;
}
17、图

MinHeap.h

template<typename Type> class MinHeap{
public:
    MinHeap(Type heap[],int n);        //initialize heap by a array
    ~MinHeap(){
        delete[] m_pheap;
    }

public:
    bool Insert(const Type item);
    bool DeleteMin(Type &first);

private:
    void Adjust(const int start, const int end);    //adjust the elements from start to end


private:
    const int m_nMaxSize;    
    Type *m_pheap;
    int m_ncurrentsize;
};

template<typename Type> void MinHeap<Type>::Adjust(const int start, const int end){
    int i = start,j = i*2+1;
    Type temp=m_pheap[i];
    while(j <= end){
        if(j<end && m_pheap[j]>m_pheap[j+1]){
            j++;
        }
        if(temp <= m_pheap[j]){
            break;
        }
        else{
            m_pheap[i] = m_pheap[j];
            i = j;
            j = 2*i+1;
        }
    }
    m_pheap[i] = temp;
}

template<typename Type> MinHeap<Type>::MinHeap(Type heap[], int n):m_nMaxSize(n){
    m_pheap = new Type[m_nMaxSize];
    for(int i=0; i<n; i++){
        m_pheap[i] = heap[i];
    }
    m_ncurrentsize = n;
    int pos=(n-2)/2;    //Find the last tree which has more than one element;
    while(pos>=0){
        Adjust(pos, n-1);
        pos--;
    }
}

template<typename Type> bool MinHeap<Type>::DeleteMin(Type &first){
    first = m_pheap[0];
    m_pheap[0] = m_pheap[m_ncurrentsize-1];
    m_ncurrentsize--;
    Adjust(0, m_ncurrentsize-1);
    return 1;
}

template<typename Type> bool MinHeap<Type>::Insert(const Type item){
    if(m_ncurrentsize == m_nMaxSize){
        cerr<<"Heap Full!"<<endl;
        return 0;
    }
    m_pheap[m_ncurrentsize] = item;
    int j = m_ncurrentsize, i = (j-1)/2;
    Type temp = m_pheap[j];
    while(j > 0){
        if(m_pheap[i] <= temp){
            break;
        }
        else{
            m_pheap[j] = m_pheap[i];
            j = i;
            i = (j-1)/2;
        }
    }
    m_pheap[j] = temp;
    m_ncurrentsize++;
    return 1;
}

Edge.h

template<typename DistType> struct Edge{
public:
    Edge(int dest, DistType cost): m_ndest(dest), m_cost(cost), m_pnext(NULL){}

public:
    int m_ndest;
    DistType m_cost;
    Edge<DistType> *m_pnext;

};

Vertex.h

#include "Edge.h"

template<typename NameType, typename DistType> struct Vertex{
public:
    Vertex(): adj(NULL){}
    NameType m_data;
    Edge<DistType> *adj;
    ~Vertex();
};

template<typename NameType, typename DistType> Vertex<NameType, DistType>::~Vertex(){
    Edge<DistType> *pmove = adj;
    while (pmove){
        adj = pmove->m_pnext;
        delete pmove;
        pmove = adj;
    }
}

Graph.h

#include "Vertex.h"

template<typename NameType, typename DistType> class Graph{
public:
    Graph(int size = m_nDefaultSize);   //create the Graph with the most vertex of size
    ~Graph();
    bool GraphEmpty() const{    //Is empty?
        return 0 == m_nnumvertex;
    }
    bool GraphFull() const{     //Is full?
        return m_nMaxNum == m_nnumvertex;
    }
    int NumberOfVertex() const{ //get the number of vertex
        return m_nnumvertex;
    }
    int NumberOfEdge() const{   //get the number of edge
        return m_nnumedges;
    }
    NameType GetValue(int v);   //get the value of the vth vertex
    DistType GetWeight(int v1, int v2); //get the weight between v1 and v2
    int GetFirst(int v);        //get the first neighbor vertex of v
    int GetNext(int v1, int v2);//get the next neighbor vertex of v1 behind v2
    bool InsertVertex(const NameType vertex);   //insert vertex with the name of vertex
    bool Removevertex(int v);   //remove the vth vertex

    //insert the edge between v1 and v2
    bool InsertEdge(int v1, int v2, DistType weight=m_Infinity);    

    bool RemoveEdge(int v1, int v2);    //delete the edge between v1 and v2
    void Print();   //print the graph

    Edge<DistType> *GetMin(int v, int *visited);    //get the min weight of the neighbor vertex of v
    void Prim(Graph<NameType, DistType> &graph);    //get the minimize span tree
    void DFS(int v, int *visited);      //depth first search
    void DFS();
    void Dijkstra(int v, DistType *shotestpath);    //get the min weight from v to other vertex
    
private:
    Vertex<NameType, DistType> *m_pnodetable;   //neighbor list
    int m_nnumvertex;
    const int m_nMaxNum;
    static const int m_nDefaultSize = 10;       //the default maximize vertex
    static const DistType m_Infinity = 100000;  //there is no edge
    int m_nnumedges;
    int Getvertexpos(const NameType vertex);    //get the vertex‘s position with the name of vertex
};


template<typename NameType, typename DistType> Graph<NameType, DistType>::Graph(int size)
        : m_nnumvertex(0), m_nMaxNum(size), m_nnumedges(0){
    m_pnodetable = new Vertex<NameType, DistType>[size];    
}

template<typename NameType, typename DistType> Graph<NameType, DistType>::~Graph(){
    Edge<DistType> *pmove;
    for (int i=0; i<this->m_nnumvertex; i++){
        pmove = this->m_pnodetable[i].adj;
        if (pmove){
            this->m_pnodetable[i].adj = pmove->m_pnext;
            delete pmove;
            pmove = this->m_pnodetable[i].adj;
        }
    }
    delete[] m_pnodetable;
}

template<typename NameType, typename DistType> int Graph<NameType, DistType>::GetFirst(int v){
    if (v<0 || v>=this->m_nnumvertex){
        return -1;
    }
    Edge<DistType> *ptemp = this->m_pnodetable[v].adj;
    return m_pnodetable[v].adj ? m_pnodetable[v].adj->m_ndest : -1;
}

template<typename NameType, typename DistType> int Graph<NameType, DistType>::GetNext(int v1, int v2){
    if (-1 != v1){
        Edge<DistType> *pmove = this->m_pnodetable[v1].adj;
        while (NULL != pmove->m_pnext){
            if (pmove->m_ndest==v2){
                return pmove->m_pnext->m_ndest;
            }
            pmove = pmove->m_pnext;
        }        
    }
    return -1;
}

template<typename NameType, typename DistType> NameType Graph<NameType, DistType>::GetValue(int v){
    if (v<0 || v>=this->m_nnumvertex){
        cerr << "The vertex is not exsit" <<endl;
        exit(1);
    }
    return m_pnodetable[v].m_data;

}

template<typename NameType, typename DistType> int Graph<NameType, DistType>::Getvertexpos(const NameType vertex){
    for (int i=0; i<this->m_nnumvertex; i++){
        if (vertex == m_pnodetable[i].m_data){
            return i;
        }
    }
    return -1;
}

template<typename NameType, typename DistType> DistType Graph<NameType, DistType>::GetWeight(int v1, int v2){
    if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){
        if (v1 == v2){
            return 0;
        }
        Edge<DistType> *pmove = m_pnodetable[v1].adj;
        while (pmove){
            if (pmove->m_ndest == v2){
                return pmove->m_cost;
            }
            pmove = pmove->m_pnext;
        }
    }
    return m_Infinity;
}

template<typename NameType, typename DistType> bool Graph<NameType, DistType>::InsertEdge(int v1, int v2, DistType weight){
    if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){
        Edge<DistType> *pmove = m_pnodetable[v1].adj;
        if (NULL == pmove){ //the first neighbor
            m_pnodetable[v1].adj = new Edge<DistType>(v2, weight);
            return 1;
        }
        while (pmove->m_pnext){
            if (pmove->m_ndest == v2){
                break;
            }
            pmove = pmove->m_pnext;
        }
        if (pmove->m_ndest == v2){  //if the edge is exist, change the weight
            pmove->m_cost = weight;
            return 1;
        }
        else{
            pmove->m_pnext = new Edge<DistType>(v2, weight);
            return 1;
        }
    }
    return 0;
}
template<typename NameType, typename DistType> bool Graph<NameType, DistType>::InsertVertex(const NameType vertex){
    int i = this->Getvertexpos(vertex);
    if (-1 != i){
        this->m_pnodetable[i].m_data = vertex;
    }
    else{
        if (!this->GraphFull()){
            this->m_pnodetable[this->m_nnumvertex].m_data = vertex;
            this->m_nnumvertex++;
        }
        else{
            cerr << "The Graph is Full" <<endl;
            return 0;
        }
    }
    return 1;
}
template<typename NameType, typename DistType> bool Graph<NameType, DistType>::RemoveEdge(int v1, int v2){
    if (v1>=0 && v1<this->m_nnumvertex && v2>=0 && v2<this->m_nnumvertex){
        Edge<DistType> *pmove = this->m_pnodetable[v1].adj, *pdel;
        if (NULL == pmove){
            cerr << "the edge is not exist!" <<endl;
            return 0;
        }
        if (pmove->m_ndest == v2){  //the first neighbor
            this->m_pnodetable[v1].adj = pmove->m_pnext;
            delete pmove;
            return 1;
        }
        while (pmove->m_pnext){
            if (pmove->m_pnext->m_ndest == v2){
                pdel = pmove->m_pnext;
                pmove->m_pnext = pdel->m_pnext;
                delete pdel;
                return 1;
            }
            pmove = pmove->m_pnext;
        }
    }
    cerr << "the edge is not exist!" <<endl;
    return 0;
}
template<typename NameType, typename DistType> bool Graph<NameType, DistType>::Removevertex(int v){
    if (v<0 || v>=this->m_nnumvertex){
        cerr << "the vertex is not exist!" << endl;
        return 0;
    }
    Edge<DistType> *pmove, *pdel;
    for (int i=0; i<this->m_nnumvertex; i++){
        pmove = this->m_pnodetable[i].adj;
        if (i != v){    //delete the edge point to v
            if (NULL == pmove){
                continue;
            }
            if (pmove->m_ndest == v){
                this->m_pnodetable[i].adj = pmove->m_pnext;
                delete pmove;
                continue;
            }
            else {
                if (pmove->m_ndest > v){    //the vertex more than v subtract 1
                    pmove->m_ndest--;
                }
            }
            while (pmove->m_pnext){
                if (pmove->m_pnext->m_ndest == v){
                    pdel = pmove->m_pnext;
                    pmove->m_pnext = pdel->m_pnext;
                    delete pdel;
                }
                else {
                    if (pmove->m_pnext->m_ndest > v){
                        pmove->m_pnext->m_ndest--;
                        pmove = pmove->m_pnext;
                    }
                }
            }
        }
        else {      //delete the edge point from v
            while (pmove){
                this->m_pnodetable[i].adj = pmove->m_pnext;
                delete pmove;
                pmove = this->m_pnodetable[i].adj;
            }
        }
    }
    this->m_nnumvertex--;
    for (int i=v; i<this->m_nnumvertex; i++)    //delete the vertex
    {
        this->m_pnodetable[i].adj = this->m_pnodetable[i+1].adj;
        this->m_pnodetable[i].m_data = this->m_pnodetable[i+1].m_data;
    }
    this->m_pnodetable[this->m_nnumvertex].adj = NULL;
    return 1;
}

template<typename NameType, typename DistType> void Graph<NameType, DistType>::Print(){
    Edge<DistType> *pmove;
    for (int i=0; i<this->m_nnumvertex; i++){
        cout << this->m_pnodetable[i].m_data << "--->";
        pmove = this->m_pnodetable[i].adj;
        while (pmove){
            cout << pmove->m_cost << "--->" << this->m_pnodetable[pmove->m_ndest].m_data << "--->";
            pmove = pmove->m_pnext;
        }
        cout << "NULL" << endl;
    }
}

template<typename NameType, typename DistType> void Graph<NameType, DistType>::Prim(Graph<NameType, DistType> &graph){ 
    int *node = new int[this->m_nnumvertex];    //using for store the vertex visited
    int *visited = new int[this->m_nnumvertex];
    int count = 0;
    Edge<DistType> *ptemp, *ptemp2 = new Edge<DistType>(0, this->m_Infinity), *pmin;
    int min;
    for (int i=0; i<this->m_nnumvertex; i++){
        graph.InsertVertex(this->m_pnodetable[i].m_data);
        node[i] = 0;
        visited[i] = 0;
    }
    visited[0] = 1;
    while(++count < this->m_nnumvertex){
        pmin = ptemp2;
        pmin->m_cost = this->m_Infinity;

        //get the minimize weight between the vertex visited and the  vertex which is not visited
        for (int i=0; i<count; i++){
            ptemp = GetMin(node[i], visited);
            if (NULL == ptemp){
                continue;
            }
            if (pmin->m_cost > ptemp->m_cost){
                pmin = ptemp;
                min = node[i];            
            }
        }

        node[count] = pmin->m_ndest;
        visited[node[count]] = 1;
        graph.InsertEdge(pmin->m_ndest, min, pmin->m_cost);
        graph.InsertEdge(min, pmin->m_ndest, pmin->m_cost);
    }
    graph.DFS();
    delete ptemp2;
    delete[] node;
    delete[] visited;
}

template<typename NameType, typename DistType> void Graph<NameType, DistType>::DFS(int v, int *visited){
    cout << "--->" << this->GetValue(v);
    visited[v] = 1;
    int weight = this->GetFirst(v);
    while (-1 != weight){
        if (!visited[weight]){
            cout << "--->" << this->GetWeight(v, weight);
            DFS(weight, visited);
        }
        weight = this->GetNext(v, weight);
    }
}

template<typename NameType, typename DistType> void Graph<NameType, DistType>::DFS(){
    int *visited = new int[this->m_nnumvertex];
    for (int i=0; i<this->m_nnumvertex; i++){
        visited[i] = 0;
    }
    cout << "head";
    DFS(0, visited);
    cout << "--->end";
}

template<typename NameType, typename DistType> Edge<DistType>* Graph<NameType, DistType>::GetMin(int v, int *visited){
    Edge<DistType> *pmove = this->m_pnodetable[v].adj, *ptemp = new Edge<DistType>(0, this->m_Infinity), *pmin = ptemp;
    while (pmove){
        if (!visited[pmove->m_ndest] && pmin->m_cost>pmove->m_cost){
            pmin = pmove;
        }
        pmove = pmove->m_pnext;
    }
    if (pmin == ptemp){
        delete ptemp;
        return NULL;
    }
    delete ptemp;
    return pmin;
}
template<typename NameType, typename DistType> void Graph<NameType, DistType>::Dijkstra(int v, DistType *shotestpath){
    int *visited = new int[this->m_nnumvertex];
    int *node = new int[this->m_nnumvertex];
    for (int i=0; i<this->m_nnumvertex; i++){
        visited[i] = 0;
        node[i] = 0;
        shotestpath[i] = this->GetWeight(v, i);
    }
    visited[v] = 1;
    for (int i=1; i<this->m_nnumvertex; i++){
        DistType min = this->m_Infinity;
        int u=v;

        for (int j=0; j<this->m_nnumvertex; j++){   //get the minimize weight
            if (!visited[j] && shotestpath[j]<min){
                min = shotestpath[j];
                u = j;
            }
        }

        visited[u] = 1;
        for (int w=0; w<this->m_nnumvertex; w++){   //change the weight from v to other vertex
            DistType weight = this->GetWeight(u, w);
            if (!visited[w] && weight!=this->m_Infinity 
                    && shotestpath[u]+weight<shotestpath[w]){
                shotestpath[w] = shotestpath[u] + weight;
            }
        }
    }
    delete[] visited;
    delete[] node;
}

test.cpp

#include <iostream>

using namespace std;

#include "Graph.h"

int main(){
    Graph<char *, int> graph,graph2;
    int shotestpath[7];
    char *vertex[] = {"地大", "武大", "华科", "交大", "北大", "清华", "复旦"};
    int edge[][3] = {{0, 1, 43}, {0, 2, 12}, {1, 2, 38}, {2, 3 ,1325}
                        ,{3, 6, 55}, {4, 5, 34}, {4, 6, 248}};    
    for (int i=0; i<7; i++){
        graph.InsertVertex(vertex[i]);
    }
    graph.Print();
    cout << endl << endl <<endl;
    for (int i=0; i<7; i++){
        graph.InsertEdge(edge[i][0], edge[i][1], edge[i][2]);
        graph.InsertEdge(edge[i][1], edge[i][0], edge[i][2]);
    }
    graph.Print();
    cout << endl << endl <<endl;
    graph.Dijkstra(0, shotestpath);
    for (int i=0; i<7; i++){
        cout << graph.GetValue(0) << "--->" << graph.GetValue(i) 
                << ":   " << shotestpath[i] <<endl;
    }
    
    cout << endl << endl <<endl;
    graph.Prim(graph2);
    cout << endl << endl <<endl;
    graph.Removevertex(2);
    graph.Print();
    return 0;

}
18、排序

Data.h

template<typename Type> class Element{
public:
    Type GetKey(){
        return key;
    }

    void SetKey(Type item){
        key = item;
    }

public:
    Element<Type>& operator =(Element<Type> copy){
        key = copy.key;
        return *this;
    }
    
    bool operator ==(Element<Type> item){
        return this->key == item.key;
    }
    
    bool operator !=(Element<Type> item){
        return this->key != item.key;
    }

    bool operator <(Element<Type> item){
        return this->key < item.key;
    }
    
    bool operator >(Element<Type> item){
        return this->key > item.key;
    }

    bool operator >=(Element<Type> item){
        return this->key >= item.key;
    }

    bool operator <=(Element<Type> item){
        return this->key <= item.key;
    }

        
private:
    Type key;
};

template<typename Type> class Sort;
template<typename Type> class DataList{
public:
    friend class Sort<Type>;
    DataList(int size=m_nDefaultSize): m_nMaxSize(size), m_ncurrentsize(0){
        m_pvector = new Element<Type>[size];
    }

    DataList(Type *data, int size);
    
    bool Insert(Type item);
    ~DataList(){
        delete[] m_pvector;
    }

    int Size(){
        return this->m_ncurrentsize;
    }
    void Swap(Element<Type> &left, Element<Type> &right){
        Element<Type> temp = left;
        left = right;
        right = temp;
    }
    
    void Print();
private:
    static const int m_nDefaultSize = 10;
    Element<Type> *m_pvector;
    const int m_nMaxSize;
    int m_ncurrentsize;
};

template<typename Type> DataList<Type>::DataList(Type *data, int size)
        : m_nMaxSize(size > m_nDefaultSize ? size : m_nDefaultSize), m_ncurrentsize(0){
    this->m_pvector = new Element<Type>[size];
    for (int i=0; i<size; i++){
        this->m_pvector[i].SetKey(data[i]);
    }
    this->m_ncurrentsize += size;

}

template<typename Type> bool DataList<Type>::Insert(Type item){
    if (this->m_ncurrentsize == this->m_nMaxSize){
        cerr << "The list is full!" <<endl;
        return 0;
    }
    this->m_pvector[this->m_ncurrentsize++].SetKey(item);
}

template<typename Type> void DataList<Type>::Print(){
    cout << "The list is:";
    for (int i=0; i<this->m_ncurrentsize; i++){
        cout << " " << this->m_pvector[i].GetKey();
    }
}

QueueNode.h

#include "QueueNode.h"

template<typename Type> class LinkQueue{
public:
    LinkQueue():m_prear(NULL),m_pfront(NULL){}
    ~LinkQueue(){
        MakeEmpty();
    }
    void Append(const Type item);
    Type Delete();
    Type GetFront();
    void MakeEmpty();
    bool IsEmpty() const{
        return m_pfront==NULL;
    }
    void Print();

private:
    QueueNode<Type> *m_prear,*m_pfront;
};

template<typename Type> void LinkQueue<Type>::MakeEmpty(){
    QueueNode<Type> *pdel;
    while(m_pfront){
        pdel=m_pfront;
        m_pfront=m_pfront->m_pnext;
        delete pdel;
    }
}

template<typename Type> void LinkQueue<Type>::Append(const Type item){
    if(m_pfront==NULL){
        m_pfront=m_prear=new QueueNode<Type>(item);
    }
    else{
        m_prear=m_prear->m_pnext=new QueueNode<Type>(item);
    }
}

template<typename Type> Type LinkQueue<Type>::Delete(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    QueueNode<Type> *pdel=m_pfront;
    Type temp=m_pfront->m_data;
    m_pfront=m_pfront->m_pnext;
    delete pdel;
    return temp;
}

template<typename Type> Type LinkQueue<Type>::GetFront(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    return m_pfront->m_data;
}

template<typename Type> void LinkQueue<Type>::Print(){
    QueueNode<Type> *pmove=m_pfront;
    cout<<"front";
    while(pmove){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }
    cout<<"--->rear"<<endl<<endl<<endl;
}

LinkQueue.h

#include "QueueNode.h"

template<typename Type> class LinkQueue{
public:
    LinkQueue():m_prear(NULL),m_pfront(NULL){}
    ~LinkQueue(){
        MakeEmpty();
    }
    void Append(const Type item);
    Type Delete();
    Type GetFront();
    void MakeEmpty();
    bool IsEmpty() const{
        return m_pfront==NULL;
    }
    void Print();

private:
    QueueNode<Type> *m_prear,*m_pfront;
};

template<typename Type> void LinkQueue<Type>::MakeEmpty(){
    QueueNode<Type> *pdel;
    while(m_pfront){
        pdel=m_pfront;
        m_pfront=m_pfront->m_pnext;
        delete pdel;
    }
}

template<typename Type> void LinkQueue<Type>::Append(const Type item){
    if(m_pfront==NULL){
        m_pfront=m_prear=new QueueNode<Type>(item);
    }
    else{
        m_prear=m_prear->m_pnext=new QueueNode<Type>(item);
    }
}

template<typename Type> Type LinkQueue<Type>::Delete(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    QueueNode<Type> *pdel=m_pfront;
    Type temp=m_pfront->m_data;
    m_pfront=m_pfront->m_pnext;
    delete pdel;
    return temp;
}

template<typename Type> Type LinkQueue<Type>::GetFront(){
    if(IsEmpty()){
        cout<<"There is no element!"<<endl;
        exit(1);
    }
    return m_pfront->m_data;
}

template<typename Type> void LinkQueue<Type>::Print(){
    QueueNode<Type> *pmove=m_pfront;
    cout<<"front";
    while(pmove){
        cout<<"--->"<<pmove->m_data;
        pmove=pmove->m_pnext;
    }
    cout<<"--->rear"<<endl<<endl<<endl;
}

Sort.h

#include "Data.h"
#include "LinkQueue.h"

template<typename Type> class Sort{
public:
    void InsertSort(DataList<Type> &list, int n=-1);
    void BinaryInsertSort(DataList<Type> &list, int n=-1);
    void ShellSort(DataList<Type> &list, const int gap=-1);
    void BubbleSort(DataList<Type> &list);
    void QuickSort(DataList<Type> &list, int left=0, int right=-3);
    void SelectSort(DataList<Type> &list);
    void HeapSort(DataList<Type> &list);
    void MergeSort(DataList<Type> &list);
    void RadixSort(DataList<int> &list, int m, int d);      //just use for integer!


private:
    void BubbleSwap(DataList<Type> &list, const int n, int &flag);
    void SelectChange(DataList<Type> &list, const int n);
    void HeapAdjust(DataList<Type> &list, const int start, const int end);
    void Merge(DataList<Type> &list, DataList<Type> &mergedlist, const int len);
    void MergeDouble(DataList<Type> &list, DataList<Type> &mergedlist, const int start, const int part, const int end);
};

template<typename Type> void Sort<Type>::InsertSort(DataList<Type> &list, int n){
    if (-1 == n){
        for (int i=1; i<list.m_ncurrentsize; i++){
            InsertSort(list, i);
        }
        return;
    }
    Element<Type> temp = list.m_pvector[n];
    int i;
    for (i=n; i>0; i--){
        if (temp > list.m_pvector[i-1]){

            break;
        }
        else{
            list.m_pvector[i] = list.m_pvector[i-1];
        }
    }
    list.m_pvector[i] = temp;
}

template<typename Type> void Sort<Type>::BinaryInsertSort(DataList<Type> &list, int n){
    if (-1 == n){
        for (int i=1; i<list.m_ncurrentsize; i++){
            BinaryInsertSort(list, i);
        }
        return;
    }
    Element<Type> temp = list.m_pvector[n];
    int left = 0, right = n-1;
    while(left <= right){
        int middle = (left + right) / 2;
        if (temp < list.m_pvector[middle]){
            right = middle - 1;
        }
        else {
            left = middle + 1;
        }
    }
    for (int i=n-1; i>=left; i--){
        list.m_pvector[i+1] = list.m_pvector[i];
    }
    list.m_pvector[left] = temp;
}

template<typename Type> void Sort<Type>::ShellSort(DataList<Type> &list, const int gap){
    if (-1 == gap){
        int gap = list.m_ncurrentsize / 2;
        while (gap){
            ShellSort(list, gap);
            gap = (int)(gap / 2);
        }
        return;
    }
    for (int i=gap; i<list.m_ncurrentsize; i++){
        InsertSort(list, i);
    }
}

template<typename Type> void Sort<Type>::BubbleSwap(DataList<Type> &list, const int n, int &flag){
    flag = 0;
    for (int i=list.m_ncurrentsize-1; i>=n; i--){
        if (list.m_pvector[i-1] > list.m_pvector[i]){
            list.Swap(list.m_pvector[i-1], list.m_pvector[i]);
            flag = 1;
        }
    }
}

template<typename Type> void Sort<Type>::BubbleSort(DataList<Type> &list){
    int flag = 1, n = 0;
    while (++n<list.m_ncurrentsize && flag){
        BubbleSwap(list, n, flag);        
    }
}

template<typename Type> void Sort<Type>::QuickSort(DataList<Type> &list, int left=0, int right=-1){
    if (-3 == right){
        right = list.m_ncurrentsize - 1;
    }
    if (left < right){
        int pivotpos = left;
        Element<Type> pivot = list.m_pvector[left];
        for (int i=left+1; i<=right; i++){
            if (list.m_pvector[i]<pivot && ++pivotpos!=i){
                list.Swap(list.m_pvector[pivotpos], list.m_pvector[i]);
            }
            list.Swap(list.m_pvector[left], list.m_pvector[pivotpos]);
        }
        QuickSort(list, left, pivotpos-1);
        QuickSort(list, pivotpos+1, right);
    }

}

template<typename Type> void Sort<Type>::SelectChange(DataList<Type> &list, const int n){
    int j = n;
    for (int i=n+1; i<list.m_ncurrentsize; i++){
        if (list.m_pvector[i] < list.m_pvector[j]){
            j = i;
        }
    }
    if (j != n){
        list.Swap(list.m_pvector[n], list.m_pvector[j]);
    }
}

template<typename Type> void Sort<Type>::SelectSort(DataList<Type> &list){
    for (int i=0; i<list.m_ncurrentsize-1; i++){
        SelectChange(list, i);
    }
}

template<typename Type> void Sort<Type>::HeapAdjust(DataList<Type> &list, const int start, const int end){
    int current = start, child = 2 * current + 1;
    Element<Type> temp = list.m_pvector[start];
    while (child <= end){
        if (child<end && list.m_pvector[child]<list.m_pvector[child+1]){
            child++;
        }
        if (temp >= list.m_pvector[child]){
            break;
        }
        else {
            list.m_pvector[current] = list.m_pvector[child];
            current = child;
            child = 2 * current + 1;
        }
    }
    list.m_pvector[current] = temp;
}

template<typename Type> void Sort<Type>::HeapSort(DataList<Type> &list){
    for (int i=(list.m_ncurrentsize-2)/2; i>=0; i--){
        HeapAdjust(list, i, list.m_ncurrentsize-1);
    }

    for (int i=list.m_ncurrentsize-1; i>=1; i--){
        list.Swap(list.m_pvector[0], list.m_pvector[i]);
        HeapAdjust(list, 0, i-1);
    }
}

template<typename Type> void Sort<Type>::MergeDouble(DataList<Type> &list, DataList<Type> &mergedlist, const int start, const int part, const int end){
    int i = start, j = part + 1, k = start;
    while (i<=part && j<=end){
        if (list.m_pvector[i] <= list.m_pvector[j]){
            mergedlist.m_pvector[k++] = list.m_pvector[i++];
        }
        else {
            mergedlist.m_pvector[k++] = list.m_pvector[j++];
        }
    }
    if (i <= part){
        for (int m=i; m<=part && k<=end;){
            mergedlist.m_pvector[k++] = list.m_pvector[m++];
        }
    }
    else {
        for (int m=j; m<=end && k<=end; m++){
            mergedlist.m_pvector[k++] = list.m_pvector[m];
        }
    }
}
template<typename Type> void Sort<Type>::Merge(DataList<Type> &list, DataList<Type> &mergedlist, const int len){
    int n = 0;
    while (n+2*len < list.m_ncurrentsize){
        MergeDouble(list, mergedlist, n, n+len-1, n+2*len-1);
        n += 2*len;
    }
    if (n+len < list.m_ncurrentsize){
        MergeDouble(list, mergedlist, n, n+len-1, list.m_ncurrentsize-1);
    }
    else {
        for (int i=n; i<list.m_ncurrentsize; i++){
            mergedlist.m_pvector[i] = list.m_pvector[i];
        }
    }
}

template<typename Type> void Sort<Type>::MergeSort(DataList<Type> &list){
    DataList<Type> temp(list.m_nMaxSize);
    temp.m_ncurrentsize = list.m_ncurrentsize;
    int len = 1;
    while (len < list.m_ncurrentsize){
        Merge(list, temp, len);
        len *= 2;
        Merge(temp, list, len);
        len *= 2;
    }
}

template<typename Type> void Sort<Type>::RadixSort(DataList<int> &list, int m, int d){
    LinkQueue<int> *queue = new LinkQueue<int>[d];
    int power = 1;
    for (int i=0; i<m; i++){
        if (i){
            power = power * d;
        }
        for (int j=0; j<list.m_ncurrentsize; j++){
            int k = (list.m_pvector[j].GetKey() / power) % d;
            queue[k].Append(list.m_pvector[j].GetKey());
        }

        for (int j=0,k=0; j<d; j++){
            while (!queue[j].IsEmpty()){
                list.m_pvector[k++].SetKey(queue[j].Delete());
            }
        }
    }
}

test.cpp

#include <iostream>

using namespace std;

#include "Sort.h"

int main(){
    int init[15]={1,3,5,7,4,2,8,0,6,9,29,13,25,11,32};
    DataList<int> data(init, 15);
    Sort<int> sort;
    data.Print();
    cout << endl << endl <<endl;
    sort.InsertSort(data);
    sort.BinaryInsertSort(data);
    sort.ShellSort(data);
    sort.BubbleSort(data);
    sort.QuickSort(data);
    sort.SelectSort(data);
    sort.HeapSort(data);
    sort.MergeSort(data);
    sort.RadixSort(data, 2, 10);
data.Print();

    return 0;
}
数据结构c++实现

数据结构c++实现

上一篇:分享非常有用的Java程序 (关键代码) (一)


下一篇:C++ API 设计 06 第一章 简介