2017 TCO Algorithm Round 2C - Division I, Level Three TreasureOfWinedag 题解

TreasureOfWinedag 题解

最终答案一定在区间\([k,k+25]\)之间。

考虑暴力dp,\(dp_{i,j}\)表示考虑了前i个字符,分成了恰好k段的方案数。

\(dp_{i,j}\in [j,j+25]\),设\(f_{i,j}=dp_{i,j}-j\) ,\(f_{i,j}\in [0,25]\)。

可以发现\(f_{i,j}\)递减,因为\(dp_{i,j}\)随着\(j\)递增,但是最多增加1。

考虑对\(f\)进行\(dp\),\(f_{i,j}=\min\{f_{k,j-1}+cost(k+1,i)-1\}\)。

由于\(cost(k+1,i)\)的取值有限,所以枚举\(cost(k+1,j)\),找到最小的下标\(k\)。

令\(g_{i,k}\)表示最小的\(j\),满足\(f_{i,j}\leq k\)。

可以直接对其dp。

code:

/*
{
######################
#       Author       #
#        Gary        #
#        2021        #
######################
*/
#include<bits/stdc++.h>
#define rb(a,b,c) for(int a=b;a<=c;++a)
#define rl(a,b,c) for(int a=b;a>=c;--a)
#define LL long long
#define IT iterator
#define PB push_back
#define II(a,b) make_pair(a,b)
#define FIR first
#define SEC second
#define FREO freopen("check.out","w",stdout)
#define rep(a,b) for(int a=0;a<b;++a)
#define SRAND mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
#define random(a) rng()%a
#define ALL(a) a.begin(),a.end()
#define POB pop_back
#define ff fflush(stdout)
#define fastio ios::sync_with_stdio(false)
#define check_min(a,b) a=min(a,b)
#define check_max(a,b) a=max(a,b)
using namespace std;
//inline int read(){
//    int x=0;
//    char ch=getchar();
//    while(ch<'0'||ch>'9'){
//        ch=getchar();
//    }
//    while(ch>='0'&&ch<='9'){
//        x=(x<<1)+(x<<3)+(ch^48);
//        ch=getchar();
//    }
//    return x;
//}
const int INF=0x3f3f3f3f;
typedef pair<int,int> mp;
/*}
*/
const int MAXN=1e5+1;
int g[MAXN][26],pre[26],P[26];
int f(int i,int j){
	if(j>i) return INF;
	if(i==0) return 0;
	if(j==0) return INF;
	int l=0,r=25;
	while(l<r){
		int mid=(l+r)>>1;
		if(g[i][mid]<=j) r=mid;
		else l=mid+1;
	}
	return l;
}
int queryg(int i,int j){
	int ans=INF;
	rep(k,26){
		if(k<=j) check_min(ans,g[P[k]-1][j-k]+1);
	}
	return ans;
}
class TreasureOfWinedag{
	public:
		int solvePuzzle(int n, int k, int m, int c0,vector<int> c1, vector<int> c2, vector<int> c3, vector<int> c4, string s){
			rb(i,s.length(),n-1){
				int t = (1ll*i * c0) % m;
				char nc = 'z';
				rep(j,25)
					if ((t >= c3[j]) and (t <= c4[j]) and ((t % c1[j]) == c2[j])){
						nc='a'+j;
						break;
					}
				s.PB(nc);
			}
			s='$'+s;
			rb(i,1,n){
				int ch=s[i]-'a';
				pre[ch]=i;
				vector<int> pos;
				rep(j,26) if(pre[j]) pos.PB(pre[j]+1);
				sort(ALL(pos));
				reverse(ALL(pos));
				rep(j,pos.size()){
					if(j){
						P[j-1]=pos[j];
					}
				}
				P[pos.size()-1]=1;
				rep(j,26){
					g[i][j]=queryg(i,j);
				}
			}
			return f(n,k)+k;
		}
}solver;

上一篇:mysql 报错 division by 0


下一篇:《Effective Python 2nd》 读书笔记——函数