题目描述
设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放
人数字0。如下图所示(见样例):
A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
. B
某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B
点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入输出格式
输入格式:
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个
表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式:
只需输出一个整数,表示2条路径上取得的最大的和。
输入输出样例
输入样例#1:
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例#1:
67
题解:
这道题大体上和我写的传纸条相似
只是要注意(1,1)和(n,n)点是有值的一定要算上
代码如下:
#include<cstdio>
#include<iostream>
using namespace std; int n,x,y,z,map[][],f[][][]; int main()
{
scanf("%d",&n);
for(;;)
{
scanf("%d%d%d",&x,&y,&z);
if(x==&&y==&&z==)break;
map[x][y]=z;
}
for(int i=;i<=*n-;++i)
for(int j=max(,i-n+);j<=min(n,i);j++)
for(int k=max(,i-n+);k<=min(n,i);k++)
{
f[i][j][k]=max(max(f[i-][j][k],f[i-][j-][k]),max(f[i-][j-][k-],f[i-][j][k-]))
+map[j][i-j+]+map[k][i-k+];
if(j==k)f[i][j][k]-=map[j][i-j+];
}
printf("%d",f[*n-][n][n]+map[][]);
}