#include "stdafx.h"
#define STACK_MAX_SIZE
30
#define QUEUE_MAX_SIZE
30
#ifndef elemType
typedef char elemType;
#endif
/************************************************************************/
/* 以下是关于二叉树操作的11个简单算法 */
/************************************************************************/
struct BTreeNode{
elemType data;
BTreeNode *left;
BTreeNode *right;
};
/*
1.初始化二叉树 */
void initBTree(BTreeNode*
*bt)
{
*bt =
NULL;
return;
}
//建立二叉树(根据a所指向的二叉树广义表字符串建立)
void createBTree(BTreeNode*
*bt, char *a)
{
BTreeNode
*p;
//定义s数组为存储根结点指针的栈使用
BTreeNode
*s[STACK_MAX_SIZE];
//定义top作为s栈的栈顶指针,初值为-1,表示空栈
int top
= -1;
//用k作为处理结点的左子树和右子树,k = 1处理左子树,k =
2处理右子树
int k;
//用i扫描数组a中存储的二叉树广义表字符串,初值为0
int i
= 0;
//把树根指针置为空,即从空树开始建立二叉树
*bt =
NULL;
//每循环一次处理一个字符,直到扫描到字符串结束符\0为止
while(a[i]
!= ‘\0‘)
{
switch(a[i])
{
case ‘
‘:
break; /* 对空格不作任何处理 */
case ‘(‘:
if(top
== STACK_MAX_SIZE -
1)
{
printf("栈空间太小!\n");
exit(1);
}
top++;
s[top] =
p;
k =
1;
break;
case ‘)‘:
if(top
== -1)
{
printf("二叉树广义表字符串错误!\n");
exit(1);
}
top--;
break;
case ‘,‘:
k =
2;
break;
default:
p
= new BTreeNode;
p->data =
a[i];
p->left = p->right =
NULL;
if(*bt ==
NULL)
{
*bt =
p;
}
else
{
if(
k ==
1)
{
s[top]->left =
p;
}else{
s[top]->right =
p;
}
}
}
//为扫描下一个字符修改i值
i++;
}
return;
}
//检查二叉树是否为空,为空则返回1,否则返回0
int emptyBTree(BTreeNode
*bt)
{
if(bt == NULL)
{
return 1;
}
else
{
return 0;
}
}
//求二叉树深度
int BTreeDepth(BTreeNode
*bt)
{
if(bt == NULL)
{
//对于空树,返回0结束递归
return 0;
}
else
{
//计算左子树的深度
int dep1
=
BTreeDepth(bt->left);
//计算右子树的深度
int dep2
=
BTreeDepth(bt->right);
if(dep1
> dep2)
{
return dep1
+ 1;
}
else
{
return dep2
+ 1;
}
}
}
//从二叉树中查找值为x的结点,若存在则返回元素存储位置,否则返回空值
elemType
*findBTree(BTreeNode *bt, elemType
x)
{
if(bt == NULL)
{
return NULL;
}
else
{
if(bt->data ==
x)
{
return &(bt->data);
}
else
{
//分别向左右子树递归查找
elemType
*p;
if(p
= findBTree(bt->left,
x))
{
return p;
}
if(p
= findBTree(bt->right,
x))
{
return p;
}
return NULL;
}
}
}
//弟归遍历输出二叉树(前序遍历)
void printBTree(BTreeNode
*bt)
{
//树为空时结束递归,否则执行如下操作
if(bt !=
NULL)
{
//根左右
printf("%c,
", bt->data);
printBTree(bt->left);
printBTree(bt->right);
}
return;
}
//清除二叉树,使之变为一棵空树
void clearBTree(BTreeNode*
*bt)
{
if(*bt != NULL)
{
clearBTree(&((*bt)->left));
clearBTree(&((*bt)->right));
free(*bt);
*bt =
NULL;
}
return;
}
//前序遍历
void preOrder(BTreeNode
*bt)
{
if(bt != NULL)
{
//根左右
printf("%c ", bt->data);
preOrder(bt->left);
preOrder(bt->right);
}
return;
}
//中序遍历
void inOrder(BTreeNode
*bt)
{
if(bt != NULL)
{
//左根右
inOrder(bt->left);
printf("%c ", bt->data);
inOrder(bt->right);
}
return;
}
//后序遍历
void postOrder(BTreeNode
*bt)
{
if(bt != NULL)
{
//左右根
postOrder(bt->left);
postOrder(bt->right);
printf("%c ", bt->data);
}
return;
}
//按层遍历
void levelOrder(BTreeNode
*bt)
{
BTreeNode *p;
BTreeNode
*q[QUEUE_MAX_SIZE];
int front = 0, rear =
0;
//将树根指针进队
if(bt !=
NULL)
{
rear
= (rear + 1) % QUEUE_MAX_SIZE;
q[rear] = bt;
}
//队列非空
while(front !=
rear)
{
//使队首指针指向队首元素
front = (front + 1) %
QUEUE_MAX_SIZE;
p =
q[front];
printf("%c ",
p->data);
//若结点存在左孩子,则左孩子结点指针进队
if(p->left
!= NULL)
{
rear =
(rear + 1) %
QUEUE_MAX_SIZE;
q[rear] = p->left;
}
//若结点存在右孩子,则右孩子结点指针进队
if(p->right
!= NULL)
{
rear =
(rear + 1) %
QUEUE_MAX_SIZE;
q[rear] = p->right;
}
}
return;
}
/************************************************************************/
/* 以下是关于二叉搜索树操作的4个简单算法 */
/************************************************************************/
//查找 递归算法
elemType
*findBSTree1(BTreeNode *bst, elemType
x)
{
/* 树为空则返回NULL
*/
if (bst == NULL)
{
return NULL;
}
else
{
if (x ==
bst->data)
{
return &(bst->data);
}
else
{
if (x
<
bst->data)
{ //向左子树查找并直接返回
return findBSTree1(bst->left,
x);
}
else
{ //向右子树查找并直接返回
return findBSTree1(bst->right,
x);
}
}
}
}
//查找 非递归算法
elemType *findBSTree2(BTreeNode *bst, elemType
x)
{
while (bst !=
NULL)
{
if (x ==
bst->data)
{
return &(bst->data);
}
else if (x <
bst->data)
{
bst =
bst->left;
}
else
{
bst =
bst->right;
}
}
return NULL;
}
//插入 递归算法
void insertBSTree1(BTreeNode*
*bst, elemType
x)
{
//新建一个根结点
if (*bst
== NULL)
{
BTreeNode *p
= new BTreeNode;
p->data = x;
p->left =
p->right = NULL;
*bst =
p;
return;
}
else if (x <
(*bst)->data)
{ //向左子树完成插入运算
insertBSTree1(&((*bst)->left), x);
}
else
{ //向右子树完成插入运算
insertBSTree1(&((*bst)->right), x);
}
}
//插入 非递归算法
void insertBSTree2(BTreeNode* *bst,
elemType x)
{
BTreeNode *p;
BTreeNode *t = *bst, *parent =
NULL;
//为待插入的元素查找插入位置
while (t
!= NULL)
{
parent = t;
if (x <
t->data)
{
t =
t->left;
}
else
{
t =
t->right;
}
}
//建立值为x,左右指针域为空的新结点
p
= new BTreeNode;
p->data =
x;
p->left = p->right =
NULL;
//将新结点链接到指针为空的位置
if (parent
== NULL)
{
//作为根结点插入
*bst = p;
}
else if (x <
parent->data)
{ //链接到左指针域
parent->left = p;
}else
{
parent->right =
p;
}
return;
}
//创建二叉树
void createBSTree(BTreeNode*
*bst, elemType
a[], int n)
{
int i;
*bst = NULL;
for (i = 0; i < n;
i++){
insertBSTree1(bst,
a[i]);
}
return;
}
//删除值为x的结点,成功返回1,失败返回0
int deleteBSTree(BTreeNode*
*bst, elemType x)
{
BTreeNode *temp =
*bst;
if (*bst == NULL)
{
return 0;
}
if (x <
(*bst)->data)
{
//向左子树递归
return deleteBSTree(&((*bst)->left),
x);
}
if (x >
(*bst)->data)
{
//向右子树递归
return deleteBSTree(&((*bst)->right),
x);
}
//待删除的元素等于树根结点值且左子树为空,将右子树作为整个树并返回1
if ((*bst)->left
== NULL)
{
*bst = (*bst)->right;
free(temp);
return 1;
}
//待删除的元素等于树根结点值且右子树为空,将左子树作为整个树并返回1
if ((*bst)->right
== NULL)
{
*bst = (*bst)->left;
free(temp);
return 1;
}
else
{
//中序前驱结点为空时,把左孩子结点值赋给树根结点,然后从左子树中删除根结点
if ((*bst)->left->right
== NULL)
{
(*bst)->data =
(*bst)->left->data;
return deleteBSTree(&((*bst)->left),
(*bst)->data);
}
else
{ //定位到中序前驱结点,把该结点值赋给树根结点,然后从以中序前驱结点为根的树上删除根结点
BTreeNode *p1 = *bst, *p2 =
p1->left;
while (p2->right
!= NULL)
{
p1 =
p2;
p2 =
p2->right;
}
(*bst)->data =
p2->data;
return deleteBSTree(&(p1->right),
p2->data);
}
}
}
int main(int argc, char *argv[])
{
elemType x, *px;
elemType a[10] = {‘a‘, ‘b‘, ‘c‘, ‘d‘,
‘e‘, ‘f‘, ‘g‘, ‘h‘, ‘i‘, ‘j‘};
BTreeNode *bst =
NULL;
createBSTree(&bst, a, 10);
printf("建立的二叉搜索树的广义表形式为:\r\n");
std::cout
<< "\r\n前序遍历:\r\n";
printBTree(bst);
printf("\r\n\r\n中序遍历:\r\n");
inOrder(bst);
printf("\r\n\r\n输入待查找元素的值:");
std::cin >>
x;
if (px = findBSTree1(bst,
x))
{
printf("查找成功!得到的x为:%d\r\n", *px);
}
else
{
printf("查找失败\r\n");
}
printf("输入待插入的元素值:");
std::cin >>
x;
insertBSTree1(&bst, x);
printf("输入待删除元素值:");
std::cin >>
x;
if (deleteBSTree(&bst,
x)){
printf("1
");
}else{
printf("0 ");
}
printf("\r\n\r\n进行相应操作后的中序遍历为:\r\n");
inOrder(bst);
printf("\r\n\r\n操作后的二叉搜索树的广义表的形式为:\r\n");
printBTree(bst);
printf("\r\n");
clearBTree(&bst);
system("pause");
return 0;
}
相关文章
- 12-27python全栈开发 day5 五、基本数据类型的基本操作和内置方法
- 12-27struts的一些基本用法和操作
- 12-27半小时,让你学会Git和Github的基本操作
- 12-27LwIP应用开发笔记之十:LwIP带操作系统基本移植
- 12-27文件与目录操作基本命令:ls
- 12-27vim基本用法操作指令
- 12-27【郭彦甫】P1 Matlab基本操作与矩阵输入
- 12-27delphi 与 C++的基本语法区别
- 12-27图像处理基本操作2
- 12-27关于python列表和元组的基本操作