POJ. 2253 Frogger (Dijkstra )
题意分析
- 首先给出n个点的坐标,其中第一个点的坐标为青蛙1的坐标,第二个点的坐标为青蛙2的坐标。给出的n个点,两两双向互通,求出由1到2可行通路的所有步骤当中,步长最大值。
- 在dij原算法的基础上稍作改动即可。dij求解的是单源最短路,现在求解的是步长最大值,那么更新原则就是,当前的这一步比保存的步如果要大的话,就更新,否则就不更新。
- 如此求解出来的就是单源最大步骤。
代码总览
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#define nmax 205
#define inf 1e8+7
using namespace std;
typedef struct{
int x,y;
}ston;
ston stone[nmax];
double mp[nmax][nmax];
double shortpath[nmax];
double ans[nmax];
bool visit[nmax];
int n;
double cal(ston a ,ston b)
{
return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) );
}
void dij(int s)
{
int cur = s;
memset(visit,0,sizeof(visit));
for(int i = 1;i<=n;++i){shortpath[i] = inf;ans[i]=inf;}
shortpath[cur] = 0;
visit[cur] = true;
int temptag;
for(int i = 1;i<=n ;++i){
double minL = inf;
for(int j = 1;j<=n;++j){
double dist;
if(!visit[j] && max(shortpath[cur] , mp[cur][j]) < shortpath[j]){
dist = max(shortpath[cur] , mp[cur][j]);
shortpath[j] = dist;
}
if(!visit[j] && minL>shortpath[j]){
minL = shortpath[j];
temptag = j;
}
}
if(minL == inf) return;
cur = temptag;
visit[cur] = true;
}
}
void init()
{
for(int i = 1;i<=n;++i)
for(int j = 1;j<=n;++j)
mp[i][j] = inf;
for(int i = 1;i<=n;++i){
scanf("%d %d",&stone[i].x,&stone[i].y);
}
for(int i = 1;i<=n;++i){
for(int j = 1;j<=n;++j){
if(i!=j){
mp[i][j] = mp[j][i] = cal(stone[i],stone[j]);
}
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
int kase = 1;
while(scanf("%d",&n)!= EOF && n!=0){
init();
dij(1);
printf("Scenario #%d\n",kase++);
printf("Frog Distance = %.3f\n\n",shortpath[2]);
}
return 0;
}