【转】【机器学习】R 正则化函数 scale

源:http://blog.163.com/shen_960124/blog/static/60730984201582594011277/

1. 数据的中心化

所谓数据的中心化是指数据集中的各项数据减去数据集的均值。

例如有数据集1, 2, 3, 6, 3,其均值为3,那么中心化之后的数据集为1-3,2-3,3-3,6-3,3-3,即:-2,-1,0,3,0

2.数据的标准化

所谓数据的标准化是指中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集的均值再除以数据集的标准差。

例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87,那么标准化之后的数据集为(1-3)/1.87,(2-3)/1.87,(3-3)/1.87,(6-3)/1.87,(3-3)/1.87,即:-1.069,-0.535,0,1.604,0

数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响。

在R语言中可以使用scale方法来对数据进行中心化和标准化:

scale方法中的两个参数center和scale的解释:

1.center和scale默认为真,即T或者TRUE

2.center为真表示数据中心化

3.scale为真表示数据标准化

#限定输出小数点后数字的位数为3位
options(digits=3)
data <- c(1, 2, 3, 6, 3) #数据中心化
scale(data, center=T, scale=F)
[,1] [1,] -2 [2,] -1 [3,] 0 [4,] 3 [5,] 0 attr(,"scaled:center") [1] 3 #数据标准化 > scale(data, center=T,scale=T) [,1] [1,] -1.06904 [2,] -0.53452 [3,] 0.00000 [4,] 1.60357 [5,] 0.00000 attr(,"scaled:center") [1] 3 attr(,"scaled:scale") [1] 1.8708

  

上一篇:关于slavetable


下一篇:linux dns服务器配置