python常用模块详解

什么是模块

常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。但其实import加载的模块分为四个通用类别: 

  1 使用python编写的代码(.py文件)

  2 已被编译为共享库或DLL的C或C++扩展

  3 包好一组模块的包

  4 使用C编写并链接到python解释器的内置模块

常用模块

下面列举python的常用模块

collections模块

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

namedtuple

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

>>> p = (, )

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:

 >>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(, )
>>> p.x
>>> p.y

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

 #namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

deque双端队列

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

OrderedDict有序字典

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

 >>> from collections import OrderedDict
>>> d = dict([('a', ), ('b', ), ('c', )])
>>> d # dict的Key是无序的
{'a': , 'c': , 'b': }
>>> od = OrderedDict([('a', ), ('b', ), ('c', )])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', ), ('b', ), ('c', )])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] =
>>> od['y'] =
>>> od['x'] =
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']

defaultDict

有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

即: {'k1': 大于66 'k2': 小于66}
 
 values = [, , ,,,,,,,]

 my_dict = {}

 for value in  values:
if value>:
if my_dict.has_key('k1'):
my_dict['k1'].append(value)
else:
my_dict['k1'] = [value]
else:
if my_dict.has_key('k2'):
my_dict['k2'].append(value)
else:
my_dict['k2'] = [value]

原生字典解决方案

 from collections import defaultdict

 values = [, , ,,,,,,,]

 my_dict = defaultdict(list)

 for value in  values:
if value>:
my_dict['k1'].append(value)
else:
my_dict['k2'].append(value)

default字典解决

tip:使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

 >>> from collections import defaultdict
>>> dd = defaultdict(lambda: 'N/A')
>>> dd['key1'] = 'abc'
>>> dd['key1'] # key1存在
'abc'
>>> dd['key2'] # key2不存在,返回默认值
'N/A'

defaultdict类的初始化函数接受一个类型作为参数,当所访问的键不存在的时候,可以实例化一个值作为默认值

>>> from collections import defaultdict
>>> dd = defaultdict(list)
>>> dd
defaultdict(<type 'list'>, {})
>>> dd['foo']
[]
>>> dd
defaultdict(<type 'list'>, {'foo': []})
>>> dd['bar'].append('quux')
>>> dd
defaultdict(<type 'list'>, {'foo': [], 'bar': ['quux']})

counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': , 'b': , 'c': , 'd': , 'e': })

时间模块

和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块。

 #常用方法
.time.sleep(secs)
(线程)推迟指定的时间运行。单位为秒。
.time.time()
获取当前时间戳

表示时间的三种方式

在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:

(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。

(2)格式化的时间字符串(Format String): ‘1999-12-06’

 %y 两位数的年份表示(-)
%Y 四位数的年份表示(-)
%m 月份(-)
%d 月内中的一天(-)
%H 24小时制小时数(-)
%I 12小时制小时数(-)
%M 分钟数(=)
%S 秒(-)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(-)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(-)星期天为星期的开始
%w 星期(-),星期天为星期的开始
%W 一年中的星期数(-)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身

(3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)

索引(Index) 属性(Attribute) 值(Values)
0 tm_year(年) 如:2016
1 tm_mon(月) 1 - 12
2 tm_mday(日) 1 - 31
3 tm_hour(时) 0 - 23
4 tm_min(分) 0 - 59
5 tm_sec(秒) 0 - 59
6 tm_wday(weekday) 0 - 6
7 tm_yday(一年中的第几天) 1 - 366
8 tm_isdst(是否是夏令时) 默认0

python中表示时间的几种格式:

 #导入时间模块
>>>import time #时间戳
>>>time.time()
1500875844.800804 #时间字符串
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
>>>time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04' #时间元组:localtime将一个时间戳转换为当前时区的struct_time
time.localtime()
time.struct_time(tm_year=, tm_mon=, tm_mday=,
          tm_hour=, tm_min=, tm_sec=,
tm_wday=, tm_yday=, tm_isdst=)

小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的

几种时间格式的转换

python常用模块详解

#时间戳-->结构化时间
#time.gmtime(时间戳) #UTC时间,与英国伦敦当地时间一致
#time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间
>>>time.gmtime()
time.struct_time(tm_year=, tm_mon=, tm_mday=, tm_hour=, tm_min=, tm_sec=, tm_wday=, tm_yday=, tm_isdst=)
>>>time.localtime()
time.struct_time(tm_year=, tm_mon=, tm_mday=, tm_hour=, tm_min=, tm_sec=, tm_wday=, tm_yday=, tm_isdst=) #结构化时间-->时间戳 
#time.mktime(结构化时间)
>>>time_tuple = time.localtime()
>>>time.mktime(time_tuple)
1500000000.0
#结构化时间-->字符串时间
#time.strftime("格式定义","结构化时间") 结构化时间参数若不传,则现实当前时间
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 14:55:36'
>>>time.strftime("%Y-%m-%d",time.localtime())
'2017-07-14' #字符串时间-->结构化时间
#time.strptime(时间字符串,字符串对应格式)
>>>time.strptime("2017-03-16","%Y-%m-%d")
time.struct_time(tm_year=, tm_mon=, tm_mday=, tm_hour=, tm_min=, tm_sec=, tm_wday=, tm_yday=, tm_isdst=-)
>>>time.strptime("07/24/2017","%m/%d/%Y")
time.struct_time(tm_year=, tm_mon=, tm_mday=, tm_hour=, tm_min=, tm_sec=, tm_wday=, tm_yday=, tm_isdst=-)

python常用模块详解

#结构化时间 --> %a %b %d %H:%M:%S %Y串
#time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
>>>time.asctime(time.localtime())
'Fri Jul 14 10:40:00 2017'
>>>time.asctime()
'Mon Jul 24 15:18:33 2017' #%a %d %d %H:%M:%S %Y串 --> 结构化时间
#time.ctime(时间戳) 如果不传参数,直接返回当前时间的格式化串
>>>time.ctime()
'Mon Jul 24 15:19:07 2017'
>>>time.ctime()
'Fri Jul 14 10:40:00 2017'
import time
true_time=time.mktime(time.strptime('2017-09-11 08:30:00','%Y-%m-%d %H:%M:%S'))
time_now=time.mktime(time.strptime('2017-09-12 11:00:00','%Y-%m-%d %H:%M:%S'))
dif_time=time_now-true_time
struct_time=time.gmtime(dif_time)
print('过去了%d年%d月%d天%d小时%d分钟%d秒'%(struct_time.tm_year-,struct_time.tm_mon-,
struct_time.tm_mday-,struct_time.tm_hour,
struct_time.tm_min,struct_time.tm_sec))

计算时间差

random模块

 >>> import random
#随机小数
>>> random.random() # 大于0且小于1之间的小数
0.7664338663654585
>>> random.uniform(,) #大于1小于3的小数
1.6270147180533838 #随机整数
>>> random.randint(,) # 大于等于1且小于等于5之间的整数
>>> random.randrange(,,) # 大于等于1且小于10之间的奇数 #随机选择一个返回
>>> random.choice([,'',[,]]) # #1或者23或者[,]
#随机选择多个返回,返回的个数为函数的第二个参数
>>> random.sample([,'',[,]],) # #列表元素任意2个组合
[[, ], ''] #打乱列表顺序
>>> item=[,,,,]
>>> random.shuffle(item) # 打乱次序
>>> item
[, , , , ]
>>> random.shuffle(item)
>>> item
[, , , , ]

生成随机验证码

import random

def v_code():

    code = ''
for i in range(): num=random.randint(,)
alf=chr(random.randint(,))
add=random.choice([num,alf])
code="".join([code,str(add)]) return code print(v_code())

生成随机验证码

sys模块

sys模块是与python解释器交互的一个接口

 sys.argv           命令行参数List,第一个元素是程序本身路径
sys.exit(n) 退出程序,正常退出时exit(),错误退出sys.exit()
sys.version 获取Python解释程序的版本信息
sys.path 返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform 返回操作系统平台名称

异常处理和status

 import sys
try:
sys.exit()
except SystemExit as e:
print(e)

序列化模块

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化。

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)

为什么要序列化

序列化的目的

1、以某种存储形式使自定义对象持久化;
2、将对象从一个地方传递到另一个地方。
3、使程序更具维护性。
 
python常用模块详解

json

Json模块提供了四个功能:dumps、dump、loads、load

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic) #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic) #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的 dic2 = json.loads(str_dic) #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2) #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} list_dic = [,['a','b','c'],,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型
print(type(str_dic),str_dic) #<class 'str'> [, ["a", "b", "c"], , {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [, ['a', 'b', 'c'], , {'k1': 'v1', 'k2': 'v2'}]

loads和dumps

import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f) #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close() f = open('json_file')
dic2 = json.load(f) #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)

load和dump

import json
f = open('file','w')
json.dump({'国籍':'中国'},f)
ret = json.dumps({'国籍':'中国'})
f.write(ret+'\n')
json.dump({'国籍':'美国'},f,ensure_ascii=False)
ret = json.dumps({'国籍':'美国'},ensure_ascii=False)
f.write(ret+'\n')
f.close()

ensure_ascii关键字参数

pickle

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic) #一串二进制内容 dic2 = pickle.loads(str_dic)
print(dic2) #字典 import time
struct_time = time.localtime()
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close() f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time2.tm_year)

shelve

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。
shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

 import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':, 'float':9.5, 'string':'Sample data'} #直接对文件句柄操作,就可以存入数据
f.close() import shelve
f1 = shelve.open('shelve_file')
existing = f1['key'] #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing)

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)

shelve只读

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close() f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close()

设置writeback

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

re模块

python正则详解:http://www.cnblogs.com/qflyue/p/8252528.html

os模块

python文件操作与os常用命令:http://www.cnblogs.com/qflyue/p/8110862.html

hashlib、configparser、logging模块

python之hashlib、configparser、logging模块 http://www.cnblogs.com/qflyue/p/8342581.html

上一篇:Silverlight DataGrid标题行居中


下一篇:【踩坑记】从HybridApp到ReactNative