python图形库:https://www.python-graph-gallery.com/
2D图:
import matplotlib.pyplot as plt plt.figure() plt.scatter(x_1[:,0] , x_1[:,2],marker=‘.‘,color=‘r‘) plt.scatter(x_2[:,0] , x_2[:,2],marker=‘.‘,color=‘g‘) plt.scatter(x_3[:,0] , x_3[:,2],marker=‘.‘,color=‘b‘) plt.show()
3D图:
import matplotlib.pyplot as plt fig=plt.figure()
import mpl_toolkits.mplot3d as mp3d ax=mp3d.Axes3D(fig) ax.scatter(x_1[:,0],x_1[:,1],x_1[:,2])
ax.plot3D(x_1[:,0],x_1[:,1],x_1[:,2]) ax.set_xlabel(‘x‘) ax.set_ylabel(‘y‘) ax.set_zlabel(‘z‘) ax.view_init(elev=45,azim=45)#从y俯视
相关系数图:
import seaborn as sns # 检验新的自变量和charges的相关性 corr_df = pd.DataFrame(x_poly, columns=[‘one‘,‘two‘,‘three‘,‘four‘]) corr_df[‘charges‘] = y plt.figure() sns.heatmap(corr_df.corr(), annot=True)
饼状图:
import matplotlib.pyplot as plt kinds = "m", "n", "l", "k" colors = ["red", "pink", "blue", "yellow"] soldNums = [1,1, 1, 2] plt.pie(soldNums, labels=kinds, autopct="%3.1f%%", startangle=90, colors=colors) plt.title("不同类型箱子的销售数量占比") plt.show()