bzoj 4034 [HAOI2015]树上操作 入栈出栈序+线段树 / 树剖 维护到根距离和

题目大意

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个

操作,分为三种:

操作 1 :把某个节点 x 的点权增加 a 。

操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。

操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

分析

真就是一见到这类题就得先写一次,发现错,再写一次

想清楚再写行不 -.-

方法1:树剖

方法2:入栈出栈序

入栈+,出栈 -

一个点x到根路径和,就是sum[1,in[x]]

如何区间修改呢

线段树上记录区间中 +的个数减去 -的个数

就是一次修改中权值总体要增加多少个delta

具体见代码

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int M=100007; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} LL val[M];
int n,m;
int g[M],te;
struct edge{
int y,nxt;
}e[M<<1]; void addedge(int x,int y){
e[++te].y=y;e[te].nxt=g[x];g[x]=te;
} int st[M],ed[M],ty[M<<1],dd[M<<1],tdfn=0; void dfs(int x,int fa){
st[x]=++tdfn;
ty[tdfn]=1;
dd[tdfn]=val[x];
int p,y;
for(p=g[x];p;p=e[p].nxt)
if((y=e[p].y)!=fa) dfs(y,x);
ed[x]=++tdfn;
ty[tdfn]=-1;
dd[tdfn]=-val[x];
} struct seg{
LL sum,tag,sz;
}a[M<<3]; void pushup(int x){
a[x].sum=a[x<<1].sum+a[x<<1|1].sum;
} void totag(int x,LL d){
a[x].sum+=d*a[x].sz;
a[x].tag+=d;
} void pushdown(int x){
if(a[x].tag){
totag(x<<1,a[x].tag);
totag(x<<1|1,a[x].tag);
a[x].tag=0;
}
} void build(int x,int l,int r){
if(l==r){
a[x].sum=dd[l];
a[x].sz=ty[l];
a[x].tag=0;
return;
}
int mid=l+r>>1;
build(x<<1,l,mid);
build(x<<1|1,mid+1,r);
pushup(x);
a[x].sz=a[x<<1].sz+a[x<<1|1].sz;
} void add(int x,int l,int r,int tl,int tr,LL d){
if(tl<=l&&r<=tr){
totag(x,d);
return;
}
int mid=l+r>>1;
pushdown(x);
if(tl<=mid) add(x<<1,l,mid,tl,tr,d);
if(mid<tr) add(x<<1|1,mid+1,r,tl,tr,d);
pushup(x);
} LL get(int x,int l,int r,int tl,int tr){
if(tl<=l&&r<=tr) return a[x].sum;
int mid=l+r>>1;
pushdown(x);
LL res=0;
if(tl<=mid) res+=get(x<<1,l,mid,tl,tr);
if(mid<tr) res+=get(x<<1|1,mid+1,r,tl,tr);
return res;
} int main(){
int i,kd,x,y;
n=rd(); m=rd();
for(i=1;i<=n;i++) val[i]=rd();
for(i=1;i<n;i++){
x=rd(),y=rd();
addedge(x,y);
addedge(y,x);
} dfs(1,0); build(1,1,2*n); while(m--){
kd=rd();
if(kd==1){
x=rd(); y=rd();
add(1,1,2*n,st[x],st[x],y);
add(1,1,2*n,ed[x],ed[x],y);
}
else if(kd==2){
x=rd(); y=rd();
add(1,1,2*n,st[x],ed[x],y);
}
else{
x=rd();
printf("%lld\n",get(1,1,2*n,1,st[x]));
}
}
return 0;
}
上一篇:BZOJ 2243 [SDOI2011]染色:树剖【维护路径上颜色段】


下一篇:tf.summary使用过程中报错: tags and values not the same shape