极值问题(acms)

【问题描述】

已知m、n为整数,且满足下列两个条件:

① m、n∈{1,2,…,k},即1≤m,n≤k,(1≤k≤109)。

②(n2-m*n-m22=1

你的任务是:编程输入正整数k,求一组满足上述两个条件的m、n,并且使m2+n2的值最大。例如,从键盘输入k=1995,则输出:m=987   n=1597。

【输入样例】

1995

【输出样例】

m=987

n=1597

极值问题(acms)极值问题(acms)

代码如下:

     long m,n,k;
double delt1,delt2,n1,n2;
scanf("%d",&k);
for(m=k;m>=;m--)
{
delt1=sqrt(*m*m+);
n1=(m+delt1)/;
n=n1;
if(n==n1&&n<=k) break; delt2=sqrt(*m*m-);
n2=(m+delt2)/;
n=n2;
if(n==n2&&n<=k) break;
}
printf("m=%d\nn=%d\n",m,n);

批注:该算法确实挺好,简洁、高效率,但是有一个问题比较明显,那就是当k的值达到10^9时,for循环内,m从k开始向1遍历。当m的值取10^9时,计算delt的时候,m^2会溢出。而且并非只有当k达到10^9才会有这个问题,当k达到10^5时就会出现这个问题。想要自己写一个函数去实现高精度数的开平方根,似乎也不是这么容易。所以,可以看看下面的递推算法。

标准答案是:

极值问题(acms)

代码如下:

         int n=,m=,k,t;
cin>>k;
do
{
t=n+m;
if(t<=k)
{
m=n;
n=t;
}
}
while(t<=k);
cout<<"m="<<m<<endl<<"n="<<n;

批注:一开始阅读该算法,实在无法理解为何会是跟斐波那契数列一样的规律。后来查资料,阅读理解,终于看懂。下面做一个记录。

极值问题(acms)

上一篇:FTP服务添加用户及设置权限


下一篇:bzoj2064