设 $$\bex a_0=1,\quad a_1=\frac{1}{2},\quad a_{n+1}=\frac{na_n^2}{1+(n+1)a_n}\ (n\geq 1). \eex$$ 试证: $\dps{\sum_{k=0}^\infty\frac{a_{k+1}}{a_k}}$ 收敛, 并求其值.
相关文章
- 10-17[Everyday Mathematics]20150225
- 10-17[Everyday Mathematics]20150226
- 10-17论文阅读:Making Virtual Pancakes — Acquiring and Analyzing Data of Everyday Manipulation Tasks through I
- 10-17CBOW原理 运用CBOW模型,给出一个语句”i drink milk everyday“, 预测 ”milk“。假设第一次随机化初始矩阵和第二次随机化初始矩阵分别为:
- 10-17Mathematics during the Scientific Revolution(18th century)
- 10-17Mathematics求解多元符号变量方程组
- 10-17everyday
- 10-17[Everyday Mathematics]20150125
- 10-17[Everyday Mathematics]20150131
- 10-17advanced mathematics 3