Hadoop之Yarn案例

Hadoop之Yarn案例

目录

Hadoop之Yarn案例

一、Yarn生产环境核心参数配置案例

二、容量调度器多队列提交案例

向Hive队列提交任务

一、Yarn生产环境核心参数配置案例

1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。

2)需求分析:

1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster

平均每个节点运行10个 / 3台 ≈ 3个任务(4 3 3)

3)修改yarn-site.xml配置参数如下:

<!-- 选择调度器,默认容量 -->
<property>
    <description>The class to use as the resource scheduler.</description>
    <name>yarn.resourcemanager.scheduler.class</name>
    <value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>
​
<!-- ResourceManager处理调度器请求的线程数量,默认50;如果提交的任务数大于50,可以增加该值,但是不能超过3台 * 4线程 = 12线程(去除其他应用程序实际不能超过8) -->
<property>
    <description>Number of threads to handle scheduler interface.</description>
    <name>yarn.resourcemanager.scheduler.client.thread-count</name>
    <value>8</value>
</property>
​
<!-- 是否让yarn自动检测硬件进行配置,默认是false,如果该节点有很多其他应用程序,建议手动配置。如果该节点没有其他应用程序,可以采用自动 -->
<property>
    <description>Enable auto-detection of node capabilities such as
    memory and CPU.
    </description>
    <name>yarn.nodemanager.resource.detect-hardware-capabilities</name>
    <value>false</value>
</property>
​
<!-- 是否将虚拟核数当作CPU核数,默认是false,采用物理CPU核数 -->
<property>
    <description>Flag to determine if logical processors(such as
    hyperthreads) should be counted as cores. Only applicable on Linux
    when yarn.nodemanager.resource.cpu-vcores is set to -1 and
    yarn.nodemanager.resource.detect-hardware-capabilities is true.
    </description>
    <name>yarn.nodemanager.resource.count-logical-processors-as-cores</name>
    <value>false</value>
</property>
​
<!-- 虚拟核数和物理核数乘数,默认是1.0 -->
<property>
    <description>Multiplier to determine how to convert phyiscal cores to
    vcores. This value is used if yarn.nodemanager.resource.cpu-vcores
    is set to -1(which implies auto-calculate vcores) and
    yarn.nodemanager.resource.detect-hardware-capabilities is set to true. The  number of vcores will be calculated as  number of CPUs * multiplier.
    </description>
    <name>yarn.nodemanager.resource.pcores-vcores-multiplier</name>
    <value>1.0</value>
</property>
​
<!-- NodeManager使用内存数,默认8G,修改为4G内存 -->
<property>
    <description>Amount of physical memory, in MB, that can be allocated 
    for containers. If set to -1 and
    yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
    automatically calculated(in case of Windows and Linux).
    In other cases, the default is 8192MB.
    </description>
    <name>yarn.nodemanager.resource.memory-mb</name>
    <value>4096</value>
</property>
​
<!-- nodemanager的CPU核数,不按照硬件环境自动设定时默认是8个,修改为4个 -->
<property>
    <description>Number of vcores that can be allocated
    for containers. This is used by the RM scheduler when allocating
    resources for containers. This is not used to limit the number of
    CPUs used by YARN containers. If it is set to -1 and
    yarn.nodemanager.resource.detect-hardware-capabilities is true, it is
    automatically determined from the hardware in case of Windows and Linux.
    In other cases, number of vcores is 8 by default.</description>
    <name>yarn.nodemanager.resource.cpu-vcores</name>
    <value>4</value>
</property>
​
<!-- 容器最小内存,默认1G -->
<property>
    <description>The minimum allocation for every container request at the RM   in MBs. Memory requests lower than this will be set to the value of this    property. Additionally, a node manager that is configured to have less memory   than this value will be shut down by the resource manager.
    </description>
    <name>yarn.scheduler.minimum-allocation-mb</name>
    <value>1024</value>
</property>
​
<!-- 容器最大内存,默认8G,修改为2G -->
<property>
    <description>The maximum allocation for every container request at the RM   in MBs. Memory requests higher than this will throw an  InvalidResourceRequestException.
    </description>
    <name>yarn.scheduler.maximum-allocation-mb</name>
    <value>2048</value>
</property>
​
<!-- 容器最小CPU核数,默认1个 -->
<property>
    <description>The minimum allocation for every container request at the RM   in terms of virtual CPU cores. Requests lower than this will be set to the  value of this property. Additionally, a node manager that is configured to  have fewer virtual cores than this value will be shut down by the resource  manager.
    </description>
    <name>yarn.scheduler.minimum-allocation-vcores</name>
    <value>1</value>
</property>
​
<!-- 容器最大CPU核数,默认4个,修改为2个 -->
<property>
    <description>The maximum allocation for every container request at the RM   in terms of virtual CPU cores. Requests higher than this will throw an
    InvalidResourceRequestException.</description>
    <name>yarn.scheduler.maximum-allocation-vcores</name>
    <value>2</value>
</property>
​
<!-- 虚拟内存检查,默认打开,修改为关闭 -->
<property>
    <description>Whether virtual memory limits will be enforced for
    containers.</description>
    <name>yarn.nodemanager.vmem-check-enabled</name>
    <value>false</value>
</property>
​
<!-- 虚拟内存和物理内存设置比例,默认2.1 -->
<property>
    <description>Ratio between virtual memory to physical memory when   setting memory limits for containers. Container allocations are expressed in terms of physical memory, and virtual memory usage is allowed to exceed this allocation by this ratio.
    </description>
    <name>yarn.nodemanager.vmem-pmem-ratio</name>
    <value>2.1</value>
</property>

4)分发配置。

注意:如果集群的硬件资源不一致,要每个NodeManager单独配置

5)重启集群

6)执行WordCount程序

[example@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount /input /output

7)观察Yarn任务执行页面

http://hadoop103:8088/cluster/apps

二、容量调度器多队列提交案例

需求:建立一个新的hive队列,其中default队列占总内存的40%,最大资源容量占总资源60%,hive队列占总内存的60%,最大资源容量占总资源80%。

1)在capacity-scheduler.xml中配置如下:

(1)修改如下配置

<!-- 指定多队列,增加hive队列 -->
<property>
    <name>yarn.scheduler.capacity.root.queues</name>
    <value>default,hive</value>
    <description>
      The queues at the this level (root is the root queue).
    </description>
</property>
​
<!-- 降低default队列资源额定容量为40%,默认100% -->
<property>
    <name>yarn.scheduler.capacity.root.default.capacity</name>
    <value>40</value>
</property>
​
<!-- 降低default队列资源最大容量为60%,默认100% -->
<property>
    <name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
    <value>60</value>
</property>

(2)为新加队列添加必要属性

<!-- 指定hive队列的资源额定容量 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.capacity</name>
    <value>60</value>
</property>
​
<!-- 用户最多可以使用队列多少资源,1表示 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.user-limit-factor</name>
    <value>1</value>
</property>
​
<!-- 指定hive队列的资源最大容量 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-capacity</name>
    <value>80</value>
</property>
​
<!-- 启动hive队列 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.state</name>
    <value>RUNNING</value>
</property>
<!-- 哪些用户有权向队列提交作业 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_submit_applications</name>
    <value>*</value>
</property>
​
<!-- 哪些用户有权操作队列,管理员权限(查看/杀死) -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_administer_queue</name>
    <value>*</value>
</property>
​
<!-- 哪些用户有权配置提交任务优先级 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.acl_application_max_priority</name>
    <value>*</value>
</property>
​
<!-- 任务的超时时间设置:yarn application -appId appId -updateLifetime Timeout
参考资料:https://blog.cloudera.com/enforcing-application-lifetime-slas-yarn/ -->
​
<!-- 如果application指定了超时时间,则提交到该队列的application能够指定的最大超时时间不能超过该值。 
-->
<property>
    <name>yarn.scheduler.capacity.root.hive.maximum-application-lifetime</name>
    <value>-1</value>
</property>
​
<!-- 如果application没指定超时时间,则用default-application-lifetime作为默认值 -->
<property>
    <name>yarn.scheduler.capacity.root.hive.default-application-lifetime</name>
    <value>-1</value>
</property>

2)分发配置文件

3)重启Yarn或者执行yarn rmadmin -refreshQueues刷新队列,就可以看到两条队列:

[exmaple@hadoop102 hadoop-3.1.3]$ yarn rmadmin -refreshQueues

向Hive队列提交任务

1)hadoop jar的方式

[example@hadoop102 hadoop-3.1.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.3.jar wordcount -D mapreduce.job.queuename=hive /input /output

2)打jar包的方式

默认的任务提交都是提交到default队列的。如果希望向其他队列提交任务,需要在Driver中声明:

public class WcDrvier {
​
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
​
        Configuration conf = new Configuration();
​
        conf.set("mapreduce.job.queuename","hive");
​
}

上一篇:Java BigDecimal详解


下一篇:[并查集] POJ 1703 Find them, Catch them