机器学习项目工作的标准流程,可以参考

标准流程:

  1. 理解问题:理解问题的核心,相关领域的问题、经验、限制、惯例、内外影响等等。
  2. Collect input features
  3. Preprocess:Fillna(fill 0,mean,or by model(eg rf)), Outlier
  4. Feature engineering:
    1. Normalize: min-max,z-score,pca,zca
    2. Transform: square,log,exp,sin,cos,rotate
    3. Embedding: one-hot, category
    4. Binning: eg. age 0-14:1 , 14-20:2
    5. Cross feature: eg. X1*X2
    6. De-periodic:eg. fft
    7. TD: y[n] = x[n] -x[n-t]
  5. Sampling: Uniform, Stratified, Pool, Undersampling, Oversampling,MCMC, Gibbs, SMOTE
  6. Build Model : DL or ML
  7. Train: Hyper params(grid search), cross validation
  8. Validate: Get metrics
上一篇:MyBatis更新数据时,时间字段的值被自动更新


下一篇:Java进阶:匿名内部类