一、基础知识
什么是雪花算法
Snowflake 中文的意思是雪花,所以常被称为雪花算法,是 Twitter 开源的分布式 ID 生成算法。
Twitter 雪花算法生成后是一个 64bit 的 long 型的数值,组成部分引入了时间戳,基本保持了自增
SnowFlake 算法的优点:
- 高性能高可用:生成时不依赖于数据库,完全在内存中生成
- 高吞吐:每秒钟能生成数百万的自增 ID
- ID 自增:存入数据库中,索引效率高
SnowFlake 算法的缺点:
依赖与系统时间的一致性,如果系统时间被回调,或者改变,可能会造成 ID 冲突或者重复。
雪花算法组成
包含四个组成部分:
- 不使用:1bit,最高位是符号位,0 表示正,1 表示负,固定为 0
- 时间戳:41bit,毫秒级的时间戳(41 位的长度可以使用 69 年)
- 标识位:5bit 数据中心 ID,5bit 工作机器 ID,两个标识位组合起来最多可以支持部署 1024 个节点
- 序列号:12bit 递增序列号,表示节点毫秒内生成重复,通过序列号表示唯一,12bit 每毫秒可产生 4096 个 ID
二、雪花算法适用场景
因为雪花算法有序自增,保障了 MySQL 中 B+ Tree 索引结构插入高性能,所以,日常业务使用中,雪花算法更多是被应用在数据库的主键 ID 和业务关联主键。
三、雪花算法生成 ID 重复问题
new对象(下面提供的方法)时,不要在循环内创建对象
四、工具类(附运行main)
/** * @Description 雪花算法 * */ public class IdWorker { private final long twepoch = 1288834974657L; private final long workerIdBits = 5L; private final long datacenterIdBits = 5L; private final long maxWorkerId = -1L ^ (-1L << workerIdBits); private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); private final long sequenceBits = 12L; private final long workerIdShift = sequenceBits; private final long datacenterIdShift = sequenceBits + workerIdBits; private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; private final long sequenceMask = -1L ^ (-1L << sequenceBits); private long workerId; private long datacenterId; private long sequence = 0L; private long lastTimestamp = -1L; public IdWorker(long workerId, long datacenterId) { if (workerId > maxWorkerId || workerId < 0) { throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); } if (datacenterId > maxDatacenterId || datacenterId < 0) { throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); } this.workerId = workerId; this.datacenterId = datacenterId; } /** * 获得下一个ID (该方法是线程安全的) * @return SnowflakeId */ public synchronized long nextId() { long timestamp = timeGen(); //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常 if (timestamp < lastTimestamp) { throw new RuntimeException( String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); } //如果是同一时间生成的,则进行毫秒内序列 if (lastTimestamp == timestamp) { //如果毫秒相同,则从0递增生成序列号 sequence = (sequence + 1) & sequenceMask; //毫秒内序列溢出 if (sequence == 0) { //阻塞到下一个毫秒,获得新的时间戳 timestamp = tilNextMillis(lastTimestamp); } } //时间戳改变,毫秒内序列重置 else { sequence = 0L; } //上次生成ID的时间截 lastTimestamp = timestamp; //移位并通过或运算拼到一起组成64位的ID return ((timestamp - twepoch) << timestampLeftShift) // | (workerId << workerIdShift) // | sequence; } protected long tilNextMillis(long lastTimestamp) { long timestamp = timeGen(); while (timestamp <= lastTimestamp) { timestamp = timeGen(); } return timestamp; } protected long timeGen() { return System.currentTimeMillis(); } public static void main(String[] args) { IdWorker idWorker = new IdWorker(0, 0); for (int i = 0; i < 100; i++) { long id = idWorker.nextId(); System.out.println(id); } } }