将数据导入到HBase有三种方式:(1) Mapreduce,输出为TableOutputFormat
.(2) 用HBase API .(3)Bulk Loading。对于大量的数据入库,第三种数据是最为有效的。
下图描述了Bulk Loading的过程:先将数据(MySQL ,Oracle ,文本文件等)加载到HDFS,通过MapReduce 将数据做成HFile (HFileOutPutForm)。然后使用HBase提供的CompleteBulkLoad(LoadIncrementalHFiles)工具加载到HBase中,这个过程很快,而且不很耗内存,不影响在线的Hbase
集群的正常操作。因为这个过程不需要结果WAL 和Memstore.
注意事项:
(1)配置一个total order partitioner。
(2)reduce 个数要和表的region 数目匹配。
(3)MR 输出的Key/Value 类型要和HFileOutPutFormat的匹配。
(4)reduce 采用KeyValueSortReducer 或者PutSortReducer。
应用场景:
(1)集群上线,原始数据集加载。
(2)数据增量。需要定期将MySql(Oracle) 的数据导入HBase。
(3)经常性的大批量入库。
对于CSV文件的加载:
hadoop jar /usr/lib/hbase/hbase-0.94.6-cdh4.3.0-
security.jar importtsv
-Dimporttsv.separator=,
-Dimporttsv.bulk.output=output
-Dimporttsv.columns=HBASE_ROW_KEY,f:count wordcount word_count.csv
该文件的数据格式为---> rowkey,列:值 。
导入到的表名为wordcount ,数据文件为word_count.csv
这样做,不会生成wordcount表。
执行
hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles output wordcount
入库完成。
hadoop jar /usr/lib/hbase/hbase-0.94.6-cdh4.3.0-
security.jar importtsv
-Dimporttsv.separator=,
-Dimporttsv.columns=HBASE_ROW_KEY,f:count wordcount word_count.csv
这样做一步到位,直接入库。
或者用
HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase classpath` ${HADOOP_HOME}/bin/hadoop jar ${HBASE_HOME}/hbase-VERSION.jar completebulkload <hdfs://storefileoutput> <tablename>
同样 一步到位,直接入库。
下面是一个MR生成HFile的例子:
import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.hbase.HBaseConfiguration;import org.apache.hadoop.hbase.KeyValue;import org.apache.hadoop.hbase.client.HTable;import org.apache.hadoop.hbase.io.ImmutableBytesWritable;import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;/*** HBase bulk import example<br>* Data preparation MapReduce job driver* <ol>* <li>args[0]: HDFS input path* <li>args[1]: HDFS output path* <li>args[2]: HBase table name* </ol>*/public class Driver {public static void main(String[] args) throws Exception {Configuration conf = new Configuration();args = new GenericOptionsParser(conf, args).getRemainingArgs();/** NBA Final 2010 game 1 tip-off time (seconds from epoch)* Thu, 03 Jun 2010 18:00:00 PDT*/conf.setInt("epoch.seconds.tipoff", 1275613200);conf.set("hbase.table.name", args[2]);// Load hbase-site.xmlHBaseConfiguration.addHbaseResources(conf);Job job = new Job(conf, "HBase Bulk Import Example");job.setJarByClass(HBaseKVMapper.class);job.setMapperClass(HBaseKVMapper.class);job.setMapOutputKeyClass(ImmutableBytesWritable.class);job.setMapOutputValueClass(KeyValue.class);job.setInputFormatClass(TextInputFormat.class);HTable hTable = new HTable(args[2]);// Auto configure partitioner and reducerHFileOutputFormat.configureIncrementalLoad(job, hTable);FileInputFormat.addInputPath(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));job.waitForCompletion(true);}}import java.io.IOException;import java.util.Locale;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.hbase.KeyValue;import org.apache.hadoop.hbase.io.ImmutableBytesWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;import org.joda.time.DateTime;import org.joda.time.DateTimeZone;import org.joda.time.format.DateTimeFormat;import org.joda.time.format.DateTimeFormatter;import au.com.bytecode.opencsv.CSVParser;/*** HBase bulk import example* <p>* Parses Facebook and Twitter messages from CSV files and outputs* <ImmutableBytesWritable, KeyValue>.* <p>* The ImmutableBytesWritable key is used by the TotalOrderPartitioner to map it* into the correct HBase table region.* <p>* The KeyValue value holds the HBase mutation information (column family,* column, and value)*/public class HBaseKVMapper extendsMapper<LongWritable, Text, ImmutableBytesWritable, KeyValue> {final static byte[] SRV_COL_FAM = "srv".getBytes();final static int NUM_FIELDS = 16;CSVParser csvParser = new CSVParser();int tipOffSeconds = 0;String tableName = "";DateTimeFormatter p = DateTimeFormat.forPattern("MMM dd, yyyy HH:mm:ss").withLocale(Locale.US).withZone(DateTimeZone.forID("PST8PDT"));ImmutableBytesWritable hKey = new ImmutableBytesWritable();KeyValue kv;/** {@inheritDoc} */@Overrideprotected void setup(Context context) throws IOException,InterruptedException {Configuration c = context.getConfiguration();tipOffSeconds = c.getInt("epoch.seconds.tipoff", 0);tableName = c.get("hbase.table.name");}/** {@inheritDoc} */@Overrideprotected void map(LongWritable key, Text value, Context context)throws IOException, InterruptedException {if (value.find("Service,Term,") > -1) {// Skip headerreturn;}String[] fields = null;try {fields = csvParser.parseLine(value.toString());} catch (Exception ex) {context.getCounter("HBaseKVMapper", "PARSE_ERRORS").increment(1);return;}if (fields.length != NUM_FIELDS) {context.getCounter("HBaseKVMapper", "INVALID_FIELD_LEN").increment(1);return;}// Get game offset in seconds from tip-offDateTime dt = null;try {dt = p.parseDateTime(fields[9]);} catch (Exception ex) {context.getCounter("HBaseKVMapper", "INVALID_DATE").increment(1);return;}int gameOffset = (int) ((dt.getMillis() / 1000) - tipOffSeconds);String offsetForKey = String.format("%04d", gameOffset);String username = fields[2];if (username.equals("")) {username = fields[3];}// Key: e.g. "1200:twitter:jrkinley"hKey.set(String.format("%s:%s:%s", offsetForKey, fields[0], username).getBytes());// Service columnsif (!fields[0].equals("")) {kv = new KeyValue(hKey.get(), SRV_COL_FAM,HColumnEnum.SRV_COL_SERVICE.getColumnName(), fields[0].getBytes());context.write(hKey, kv);}if (!fields[1].equals("")) {kv = new KeyValue(hKey.get(), SRV_COL_FAM,HColumnEnum.SRV_COL_TERM.getColumnName(), fields[1].getBytes());context.write(hKey, kv);}if (!fields[2].equals("")) {kv = new KeyValue(hKey.get(), SRV_COL_FAM,HColumnEnum.SRV_COL_USERNAME.getColumnName(), fields[2].getBytes());context.write(hKey, kv);}if (!fields[3].equals("")) {kv = new KeyValue(hKey.get(), SRV_COL_FAM,HColumnEnum.SRV_COL_NAME.getColumnName(), fields[3].getBytes());context.write(hKey, kv);}if (!fields[4].equals("")) {kv = new KeyValue(hKey.get(), SRV_COL_FAM,HColumnEnum.SRV_COL_UPDATE.getColumnName(), fields[4].getBytes());context.write(hKey, kv);}if (!fields[9].equals("")) {kv = new KeyValue(hKey.get(), SRV_COL_FAM,HColumnEnum.SRV_COL_TIME.getColumnName(), fields[9].getBytes());context.write(hKey, kv);}context.getCounter("HBaseKVMapper", "NUM_MSGS").increment(1);/** Output number of messages per quarter and before/after game. This should* correspond to the number of messages per region in HBase*/if (gameOffset < 0) {context.getCounter("QStats", "BEFORE_GAME").increment(1);} else if (gameOffset < 900) {context.getCounter("QStats", "Q1").increment(1);} else if (gameOffset < 1800) {context.getCounter("QStats", "Q2").increment(1);} else if (gameOffset < 2700) {context.getCounter("QStats", "Q3").increment(1);} else if (gameOffset < 3600) {context.getCounter("QStats", "Q4").increment(1);} else {context.getCounter("QStats", "AFTER_GAME").increment(1);}}}
/*** HBase table columns for the 'srv' column family*/public enum HColumnEnum {SRV_COL_SERVICE ("service".getBytes()),SRV_COL_TERM ("term".getBytes()),SRV_COL_USERNAME ("username".getBytes()),SRV_COL_NAME ("name".getBytes()),SRV_COL_UPDATE ("update".getBytes()),SRV_COL_TIME ("pdt".getBytes());private final byte[] columnName;HColumnEnum (byte[] column) {this.columnName = column;}public byte[] getColumnName() {return this.columnName;}}