Machine learning(3-Linear Algebra Review )

1、Matrices and vectors

  • Matrix :Rectangular array of numbers

Machine learning(3-Linear Algebra Review )

a notation R3×3

  • Vector : An n×1 matrix

Machine learning(3-Linear Algebra Review )

this is a three dimensional vector , a notation R3

  • Machine learning(3-Linear Algebra Review )

2、Addition and scalar multiplication

  • Machine learning(3-Linear Algebra Review )
  • Machine learning(3-Linear Algebra Review )
  • Machine learning(3-Linear Algebra Review )

3、Matrix-vector multiplication

4、Matrix-matrix multiplication

  • Same as above

5、Matrix multiplication properties

  • No commutative A×B ≠ B×A (B is not identity matrix)
  • Yes associative (A×B)×C=A×(B×C)
  • Machine learning(3-Linear Algebra Review )
  • For any matrix A, A×I = I×A = A

6、Inverse and transpose

  • Inverse :

we can use python to implement and for example :

from numpy import *

# 自行判断|A|≠0
# 求逆矩阵 ,建议:取小数点后一位化为分数

A = mat([[1, -1, 1],
         [1, 1, 0],
         [-1, 0, 1]])

B = A.I
print(B)

#  [ 0.33333333  0.33333333 -0.33333333]
#  [-0.33333333  0.66666667  0.33333333]
#  [ 0.33333333  0.33333333  0.66666667]
# 0.333≈ 1/3 ,0.667≈ 2/3
  • Transpose :

Machine learning(3-Linear Algebra Review )

Machine learning(3-Linear Algebra Review )

上一篇:XML Namespace (xmlns) 属性


下一篇:Linux下安装及简单使用nmap