STL 迭代器适配器(iterator adapter)

iterator adapter

graph LR
iterator --- reverse_iterator
iterator --- Insert_iterator
iterator --- iostream_iterator

Insert_iterator --- back_insert_iterator
Insert_iterator --- front_insert_iterator
Insert_iterator --- insert_iterator

插入迭代器:将一般迭代器的赋值操作转变为插入操作。

insert iterator

当用户对inserter iterator作赋值操作时,就在inserter iterator类中定义的operator()中调用底层容器的插入操作(push_back,push_front,insert,etc.).

以back_inserter插入迭代适配器为例:(front_inserter和inserter与该类相类似)

template <class _Container>
inline back_insert_iterator<_Container> back_inserter(_Container& __x) {
return back_insert_iterator<_Container>(__x);
}

当用户调用back_inserter函数时,函数实际返回后向插入迭代器类(back_insert_iterator)对象,并将容器参数传递给后向插入迭代器类的构造函数。

后向插入迭代器类代码(back_insert_iterator):

template <class _Container>
class back_insert_iterator {
protected:
_Container* container;
public:
typedef _Container container_type;
typedef output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference; explicit back_insert_iterator(_Container& __x) : container(&__x) {}
back_insert_iterator<_Container>&
operator=(const typename _Container::value_type& __value) {
container->push_back(__value);
return *this;
}
back_insert_iterator<_Container>& operator*() { return *this; }
back_insert_iterator<_Container>& operator++() { return *this; }
back_insert_iterator<_Container>& operator++(int) { return *this; }
};

类中有容器类指针_Container* container,指向待插入的容器。在类中定义的赋值操作符=中,调用了底层容器的push_back函数,将operator=参数__value插入到容器尾部。

类中还重载了迭代器操作符:dereference [],prefix_increment[++],post_increment[++(int)]。在其函数体中只是简单地返回当前迭代器本身(this),并未进行相应的前进等操作,说明对此类back_insert_iterator对象进行上述操作是不会产生什么效果。

结合例子分析:

#include<iostream>
#include<vector>
#include<algorithm>
#include<iterator> using namespace std; int main(){
int ia[]={1,5,3,6,4,8,9};
vector<int> ivec(ia,ia+7);
ostream_iterator<int> outite(cout," "); copy(ia,ia+3,back_inserter(ivec)); //a
copy(ivec.begin(),ivec.end(),outite);
//1 5 3 6 4 8 9 1 5 3
cout<<endl; return 0;
}

 程序中a行调用back_inserter函数,生成对ivec向量的后向迭代器对象(back_insert_iterator object),并将该对象传入到copy算法。在copy算法中将利用该对象作为函数,对容器中的对象进行处理。

 在程序中,后向迭代器对象只是被当作一个函数(functor)使用,对容器调用该对象提供的功能,而不是像传统的迭代器来访问数组中的元素,因此,对其进行dereference [*],prefix_increment[++],post_increment[++(int)]操作都不会产生什么效果。

程序的运行结果为:

1 5 3 6 4 8 9 1 5 3

reverse iterator

反向迭代器:将迭代器的移动方向倒转:前进变为后退,后退变为前进。

在某些容器类中定义反向迭代器成员,如vector:

template <class _Tp, class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class vector : protected _Vector_base<_Tp, _Alloc>
{
//...
typedef value_type* iterator; // vector的迭代器是普通指针
typedef const value_type* const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator; reverse_iterator rbegin()
{ return reverse_iterator(end()); }
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); }
reverse_iterator rend()
{ return reverse_iterator(begin()); }
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); }
//...
}

在上面的代码中,该类还定义了rbegin(),rend()等函数,可以返回容器的反向迭代器。

reverse_iterator类的定义如下:

template <class _RandomAccessIterator, class _Tp, class _Reference = _Tp&,
class _Distance = ptrdiff_t>
class reverse_iterator {
typedef reverse_iterator<_RandomAccessIterator, _Tp, _Reference, _Distance>
_Self;
protected:
_RandomAccessIterator current;
public:
typedef random_access_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _Distance difference_type;
typedef _Tp* pointer;
typedef _Reference reference; reverse_iterator() {}
explicit reverse_iterator(_RandomAccessIterator __x) : current(__x) {}
_RandomAccessIterator base() const { return current; }
_Reference operator*() const { return *(current - 1); }
#ifndef __SGI_STL_NO_ARROW_OPERATOR
pointer operator->() const { return &(operator*()); }
#endif /* __SGI_STL_NO_ARROW_OPERATOR */
_Self& operator++() {
--current;
return *this;
}
_Self operator++(int) {
_Self __tmp = *this;
--current;
return __tmp;
}
_Self& operator--() {
++current;
return *this;
}
_Self operator--(int) {
_Self __tmp = *this;
++current;
return __tmp;
}
_Self operator+(_Distance __n) const {
return _Self(current - __n);
}
_Self& operator+=(_Distance __n) {
current -= __n;
return *this;
}
_Self operator-(_Distance __n) const {
return _Self(current + __n);
}
_Self& operator-=(_Distance __n) {
current += __n;
return *this;
}
_Reference operator[](_Distance __n) const { return *(*this + __n); }
};

迭代器的前进,后退等操作都与普通迭代器的方向相反。

  _Reference operator*() const { return *(current - 1); }

在解引用函数*定义中,函数先向前进一步,然后再对其解引用并返回,而正向迭代器则是直接解析其指向的元素。

stream iterator

流迭代器:将迭代器绑定到一个数据流(stream)对象上。包括istream_iterator和ostream_iterator。

graph LR
stream_iterator --- istream_iterator
stream_iterator --- ostream_iterator
istream_iterator -.-> istream
ostream_iterator -.-> ostream

ostream_iterator

istream iterator在类的内部有一个istream类型的指针。当用户对迭代器进行操作时,迭代器内部通过该指针指向的输入流对象,完成相应的操作。

template <class _Tp, class _Dist>
class istream_iterator {
template <class _T1, class _D1>
friend bool operator==(const istream_iterator<_T1, _D1>&,
const istream_iterator<_T1, _D1>&);
protected:
istream* _M_stream;
_Tp _M_value;
bool _M_end_marker;
void _M_read() {
_M_end_marker = (*_M_stream) ? true : false;
if (_M_end_marker) *_M_stream >> _M_value;
_M_end_marker = (*_M_stream) ? true : false;
}
public:
typedef input_iterator_tag iterator_category;
typedef _Tp value_type;
typedef _Dist difference_type;
typedef const _Tp* pointer;
typedef const _Tp& reference; istream_iterator() : _M_stream(&cin), _M_end_marker(false) {}
istream_iterator(istream& __s) : _M_stream(&__s) { _M_read(); }
reference operator*() const { return _M_value; }
pointer operator->() const { return &(operator*()); }
istream_iterator<_Tp, _Dist>& operator++() {
_M_read();
return *this;
}
istream_iterator<_Tp, _Dist> operator++(int) {
istream_iterator<_Tp, _Dist> __tmp = *this;
_M_read();
return __tmp;
}
};

类中istream类指针_M_stream实现迭代器的数据输入操作。_M_value变量保存最近输入的值。该类的默认构造函数用cin初始化_M_stream成员,并设置流输入结束符。用户也可以自己指定其他输入流(如文件流等)来初始化输入流指针成员_M_stream。

istream_iterator对象通常配合算法使用,可以用输入流完成对容器的初始化或赋值等功能。在算法中会调用istream_iterator对象的前进操作符号,而在自增操作符函数体中,调用了_M_read函数,在_M_read函数中,先判断是否到达流结尾,若未到达结尾,则调用输入流的operator>> ,将输入值赋给_M_value,并更新到达结尾状态。解引用操作符则可返回当前的最新输入值_M_value。每次对istream_iterator对象调用operator++,都会引发数据输入,并将输入值保存在缓存变量中。

ostream_iterator

ostream_iterator 类完成数据的输出操作。于istream_iterator的差别主要在赋值操作符operator=中:

  ostream_iterator<_Tp>& operator=(const _Tp& __value) {
*_M_stream << __value;
if (_M_string) *_M_stream << _M_string;
return *this;
}

每次对ostream_iterator类对象调用赋值操作时,都会将右操作数 __value输出到指定的输出流中,并输入指定的分割字符串。

ostream_iterator类中*了其他几个操作符的功能,使得对其进行操作失效:

  ostream_iterator<_Tp>& operator*() { return *this; }
ostream_iterator<_Tp>& operator++() { return *this; }
ostream_iterator<_Tp>& operator++(int) { return *this; }
上一篇:自动绘图AI:程序如何画出动漫美少女


下一篇:设计模式(十):从电影院中认识"迭代器模式"(Iterator Pattern)