成功解决To fix this you could try to: 1. loosen the range of package versions you‘ve specified ​​​​​​​

解决问题

成功解决To fix this you could try to: 1. loosen the range of package versions you‘ve specified ​​​​​​​



he conflict is caused by:

tensorflow 2.5.0 depends on keras—nightly=2.5.0.dev

tensorflow 2.4.2 depends on tensorflow—estimator<2.5.0 and >=2.4.0

tensorflow 2.4.1 depends on tensorflow—estimator<2.5.0 and >=2.4.0

tensorflow 2.4.0 depends on tensorflow—estimator<2.5.0 and >=2.4.0rc0

tensorflow 2.3.3 depends on tensorflow—estimator<2.4.0 and >=2.3.0

tensorflow 2.3.2 depends on tensorflow—estimator<2.4.0 and >=2.3.0

tensorflow 2.3.1 depends on tensorflow—estimator<2.4.0 and >=2.3.0

tensorflow 2.3.0 depends on tensorflow—estimator<2.4.0 and >=2.3.0

tensorflow 2.2.3 depends on tensorflow—estimator<2.3.0 and >=2.2.0

tensorflow 2.2.2 depends on tensorflow—estimator<2.3.0 and >=2.2.0

tensorflow 2.2.1 depends on tensorflow—estimator<2.3.0 and >=2.2.0

tensorflow 2.2.0 depends on tensorflow—estimator<2.3.0 and >=2.2.0

To fix this you could try to:

1. loosen the range of package versions you've specified

2. remove package versions to allow pip attempt to solve the dependency conflict


解决思路


要解决这个问题,你可以尝试:

1. 放宽您指定的包版本的范围

2. 删除包版本以允许PIP尝试解决依赖项冲突


解决方法


参考文章:成功解决WARNING: Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after cohttps://yunyaniu.blog.csdn.net/article/details/119523263


上一篇:RuntimeError: expected dtype Double but got dtype Float 问题解决


下一篇:standard_init_linux.go:228: exec user process caused: exec format error