Pointnet_cls

点击查看代码
#以下代码是在编码点云的特征后进行的,即在maxpool之后的结构
import torch.nn as nn
import torch.utils.data
import torch.nn.functional as F
from models.pointnet_utils import PointNetEncoder,feature_transform_reguliarzer


class get_model(nn.Module):
    def __init__(self, k=40, normal_channel=True):
        super(get_model, self).__init__()
        if normal_channel:
            channel = 6
        else:
            channel = 3
        self.feat = PointNetEncoder(global_feat=True, feature_transform=True, channel=channel)
        self.fc1 = nn.Linear(1024, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, k)
        self.dropout = nn.Dropout(p=0.4)
        self.bn1 = nn.BatchNorm1d(512)
        self.bn2 = nn.BatchNorm1d(256)
        self.relu = nn.ReLU()

    def forward(self, x):
        x, trans, trans_feat = self.feat(x)
        x = F.relu(self.bn1(self.fc1(x)))
        x = F.relu(self.bn2(self.dropout(self.fc2(x))))              #nn.Dropout-使每个位置的元素都有一定概率归0,以此来模拟现实生活中的某些频道的数据缺失,以达到数据增强的目的
        x = self.fc3(x)
        x = F.log_softmax(x, dim=1)                                  #F.softmax-按照行(1)或者列(0)来做归一化,F.log_softmax-在softmax的结果上做一次log运算
        return x, trans_feat

class get_loss(torch.nn.Module):
    def __init__(self, mat_diff_loss_scale=0.001):
        super(get_loss, self).__init__()
        self.mat_diff_loss_scale = mat_diff_loss_scale

    def forward(self, pred, target, trans_feat):
        loss = F.nll_loss(pred, target)                               #F.nll_loss()-nn.CrossEntropyLoss()与NLLLoss()相同,唯一不同的是前者为我们去做log_softmax
        mat_diff_loss = feature_transform_reguliarzer(trans_feat)

        total_loss = loss + mat_diff_loss * self.mat_diff_loss_scale
        return total_loss

上一篇:StatefulSet更新策略


下一篇:apk反编译、smali修改、回编译笔记