思路来源:Zed222
如果一个区间里的数都有这个质数,那么我们就直接利用性质\(\phi(n * p) = \phi(n) * p\),如果没有这个区间中有没有这个质数的,那么就退化到了单点修改,当时比赛的时候,队伍感觉就没有了头绪,而今天补题发现确实是单点修改,并且代码跑的飞快,具体的证明就不深究了,还有当时并不会存以一个区间里存在有哪些质数(维护区间有哪些质数,\(pushup\)的时候我们用与操作),然后通过做了CF. Please, another Queries on Array?这道题学到\(300\)以内只有六十一个质数,所以可以用状压的方式存,而本题\(100\)以内的质数有二十多个,也采用状压的方式。
进入正题:
-
当一个区间里的数都有这个质数的时候,直接利用性质\(\phi(n \times p) = \phi(n) \times p\),然后\(\sum\limits_{i = l}^{r}\phi(x_i \times p^k) = p^k \times \sum\limits_{i = l}^{r}\phi(x_i)\)。
-
否则进行单点修改,当
tr[u].l == tr[u].r
时,进行单点修改。
为了单点修改方便,我们利用算术基本定理化简一下式子:\(\phi(n) = n \times \prod\limits \cfrac{(p_i - 1)}{p_i} = \prod\limits (p_i - 1) \times p_i^{a_{i - 1}}\)。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1E5 + 10, Mod = 998244353, M = 105;
int euler[M], cntp, primes[M], state[M];
int a[N];
int cnt[M][30];
bitset<30> st[M];
struct SegMentTree {
int l, r;
LL sum;
LL laz;
bitset<30> has;
}tr[N * 4];
void get_euler(int n) {
euler[1] = 1;
for (int i = 2; i <= n; i++) {
if (!state[i]) primes[cntp++] = i, euler[i] = i - 1;
for (int j = 0; primes[j] <= n / i; j++) {
state[i * primes[j]] = true;
if (i % primes[j] == 0) {
euler[i * primes[j]] = euler[i] * primes[j];
break;
}
euler[i * primes[j]] = euler[i] * (primes[j] - 1);
}
}
}
LL qmi(LL a, LL b, LL Mod) {
LL res = 1ll;
while (b) {
if (b & 1) res = res * a % Mod;
b >>= 1;
a = a * a % Mod;
}
return res % Mod;
}
void pushup(int u) {
tr[u].sum = (tr[u << 1].sum + tr[u << 1 | 1].sum) % Mod;
tr[u].has = tr[u << 1].has & tr[u << 1 | 1].has;
}
void pushdown(int u) {
auto &root = tr[u], &left = tr[u << 1], &right = tr[u << 1 | 1];
if (root.laz == 1) return;
left.sum = left.sum * root.laz % Mod;
right.sum = right.sum * root.laz % Mod;
left.laz = left.laz * root.laz % Mod;
right.laz = right.laz * root.laz % Mod;
root.laz = 1;
}
void build(int u, int l, int r) {
if (l == r) {
tr[u] = {l, r, euler[a[l]], 1ll, st[a[l]]};
return;
}
tr[u] = {l, r}, tr[u].laz = 1ll;
int mid = l + r >> 1;
build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r);
pushup(u);
}
void modify(int u, int l, int r, int k, int ct) {
int p = primes[k];
if (tr[u].l >= l && tr[u].r <= r && tr[u].has[k]) { //当前区间有这个质因子
tr[u].sum = tr[u].sum * qmi(p, ct, Mod) % Mod;
tr[u].laz = tr[u].laz * qmi(p, ct, Mod) % Mod;
} else if (tr[u].l == tr[u].r) { //直至单点修改
tr[u].has[k] = 1;
tr[u].sum = tr[u].sum * (p - 1) % Mod;
tr[u].sum = tr[u].sum * qmi(p, ct - 1, Mod) % Mod;
} else {
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if (l <= mid) modify(u << 1, l, r, k, ct);
if (r > mid) modify(u << 1 | 1, l, r, k, ct);
pushup(u);
}
}
LL query(int u, int l, int r) {
if (tr[u].l >= l && tr[u].r <= r) {
return tr[u].sum;
} else {
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
LL res = 0;
if (l <= mid) res = (res + query(u << 1, l, r)) % Mod;
if (r > mid) res = (res + query(u << 1 | 1, l, r)) % Mod;
return res;
}
}
int main() {
get_euler(100);
for (int i = 1; i <= 100; i++) {
for (int j = 0; j < cntp; j++) {
if (i % primes[j] == 0) {
int s = 0, temp = i;
while (temp % primes[j] == 0) s++, temp /= primes[j];
cnt[i][j] = s;
st[i][j] = (cnt[i][j] > 0);
}
}
}
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
build (1, 1, n);
while (m--) {
int op, l, r;
scanf("%d%d%d", &op, &l, &r);
if (op == 0) {
int w;
scanf("%d", &w);
for (int i = 0; i < cntp; i++) {
if (cnt[w][i]) {
modify(1, l, r, i, cnt[w][i]);
}
}
} else {
printf("%lld\n", query(1, l, r));
}
}
return 0;
}