这里使用的自带vc工程的1.8版本,地址 http://gnuwin32.sourceforge.net/packages/gsl.htm
这个网页里面有GSL1.8版本的,里面有目录VC8,下面有libgsl.sln, GSL的官方文档在
http://www.gnu.org/software/gsl/doc/latex/gsl-ref.pdf GSL都是C的API和一些结构体,我们
试了下多项式求根的例子,多项式是x^5+1,配置好编译好的gsl的lib, dll和header
#include <stdio.h> #include <gsl/gsl_poly.h> int main(void) { int i; /* coefficients of P(x) = -1 + x^5 */ double a[6] = { -1, 0, 0, 0, 0, 1 }; double z[10]; gsl_poly_complex_workspace* w = gsl_poly_complex_workspace_alloc(6); gsl_poly_complex_solve(a, 6, w, z); gsl_poly_complex_workspace_free(w); for (i = 0; i < 5; i++) { printf("z%d = %+.18f %+.18f\n", i, z[2 * i], z[2 * i + 1]); } return 0; }
最后控制台输出:
z0 = -0.809016994374947673 +0.587785252292473359
z1 = -0.809016994374947673 -0.587785252292473359
z2 = +0.309016994374947507 +0.951056516295152976
z3 = +0.309016994374947507 -0.951056516295152976
z4 = +0.999999999999999889 +0.000000000000000000
把实根和复根都求出来了,换一下系数,double a[6] = { -1, 0.1, 0.2, 0.3, 0.4, 1 };
多项式是-1+0.1*x+0.2*x^2+0.3*x^3+0.4*x^4+x^5
输出:
z0 = +0.835460440971803497 +0.000000000000000000
z1 = +0.247415004045392517 +1.007728810338902381
z2 = +0.247415004045392517 -1.007728810338902381
z3 = -0.865145224531293833 +0.602636011854109310
z4 = -0.865145224531293833 -0.602636011854109310