树状数组(线段树)套主席树,修改的部分会用到,算是积累一个带修主席树的板子
#include <bits/stdc++.h>
#define inf 0x7fffffff
#define ll long long
//#define int long long
//#define double long double
#define re register int
#define void inline void
#define eps 1e-5
//#define mod 1e9+7
//#define ls(p) p<<1
//#define rs(p) p<<1|1
//#define pi acos(-1.0)
#define pb push_back
#define P pair < int , int >
#define mk make_pair
#define fi first
#define se second
//#define unordered_map map
//#define __int128 long long
using namespace std;
const int mod=998244353;
const int N=2e5+5;
int rt[N<<7],n,q,a[N];
namespace HJT
{
#define ls(p) e[p].l
#define rs(p) e[p].r
struct nod
{
int l,r;
ll sum;
}e[N<<7];
int tot;
void insert(int &p,int l,int r,int pos,ll val)
{
if(!p) p=++tot;
e[p].sum+=val;
if(l==r) return;
int mid=(l+r)>>1;
if(pos<=mid) insert(ls(p),l,mid,pos,val);
else insert(rs(p),mid+1,r,pos,val);
}
ll ask(int p,int l,int r,int pos)
{
if(l==r) return e[p].sum;
int mid=(l+r)>>1;
if(pos<=mid) return ask(ls(p),l,mid,pos);
return ask(rs(p),mid+1,r,pos)+e[ls(p)].sum;
}
#undef ls
#undef rs
}
namespace TREE
{
int lowbit(int x){return x&(-x);}
void update(int p,int pos,ll val)
{
for(re i=p;i<=N;i+=lowbit(i)) HJT::insert(rt[i],1,N,pos,val);
}
ll ask(int L,int R,int pos)
{
ll ans=0;
for(re i=R;i;i-=lowbit(i)) ans+=HJT::ask(rt[i],1,N,pos);
for(re i=L-1;i;i-=lowbit(i)) ans-=HJT::ask(rt[i],1,N,pos);
return ans;
}
}
void solve()
{
cin>>n>>q;
for(re i=1;i<=n;i++) scanf("%d",&a[i]);
for(re i=1;i<=n;i++) TREE::update(i,a[i],a[i]);
while(q--)
{
int op,x,y;
scanf("%d%d%d",&op,&x,&y);
if(op==1)
{
TREE::update(x,a[x],-a[x]);
TREE::update(x,y,y);
a[x]=y;
}
else
{
ll ans=0,la=0;
while(1)
{
la=TREE::ask(x,y,min(ans+1,1ll*N));
if(la==ans) break;
ans=la;
}
printf("%lld\n",ans+1);
}
}
}
signed main()
{
// fflush(stdout);
// srand(102321547);
// freopen("Ain.txt", "r", stdin)
// freopen("Aout.txt", "w", stdout);
// freopen("9.out", "w", stdout);
int T=1;
// cin>>T;
for(int index=1;index<=T;index++)
{
// printf("Case %d: ",index);
solve();
// puts("");
}
return 0;
}
/*
6 1
ABABBA
1 1 3 3 4
6 4
*/