亲测代码程序可运行使用,open3d版本0.13.0。
open3d数据资源下载:GitHub - Cobotic/Open3D: Open3D: A Modern Library for 3D Data Processing
代码执行功能有:点云输入、可视化、姿态图、得到合并的点云,详情请见代码。
'''
Author: dongcidaci
Date: 2021-09-14 11:52:46
LastEditTime: 2021-09-14 13:21:40
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: \open3d_code\2_04_dianyunduoshijiaopeizhun.py
'''
import open3d as o3d
import numpy as np
import copy
#多视角点云配准
#多视角配准是在全局空间中对齐多个几何形状的过程。比较有代表性的是,输入是一组几何形状 { P i }
#(可以是点云或者RGBD图像)。输出是一组刚性变换{ T i }
#变换后的点云 { T i P i }可以在全局空间中对齐。
#输入
#第一部分是从三个文件中读取三个点云数据,这三个点云将被降采样和可视化,可以看出他们三个是不对齐的。
def load_point_clouds(voxel_size=0.0):
pcds = []
for i in range(3):
pcd = o3d.io.read_point_cloud("test_data/ICP/cloud_bin_%d.pcd" % i)
pcd_down = pcd.voxel_down_sample(voxel_size=voxel_size)
pcds.append(pcd_down)
return pcds
voxel_size = 0.02
pcds_down = load_point_clouds(voxel_size)
o3d.visualization.draw_geometries(pcds_down)
#姿态图
#姿态图有两个关键的基础:节点和边。节点是与姿态矩阵Ti关联的一组几何体Pi,
#通过该矩阵能够将Pi转换到全局空间。集和{ T i }是一组待优化的未知的变量
#PoseGraph.nodes是PoseGraphNode的列表。我们设P0的空间是全局空间
#因此T0是单位矩阵。其他的姿态矩阵通过累加相邻节点之间的变换来初始化。相邻节点通常都有着大规模的重叠并且能够通过Point-to-plane ICP来配准。
#下面的脚本创造了具有三个节点和三个边的姿态图。
# 这些边里,两个是odometry edges(uncertain = False),一个是loop closure edge(uncertain = True)。
def pairwise_registration(source, target):
print("Apply point-to-plane ICP")
icp_coarse = o3d.pipelines.registration.registration_icp(
source, target, max_correspondence_distance_coarse, np.identity(4),
o3d.pipelines.registration.TransformationEstimationPointToPlane())
icp_fine = o3d.pipelines.registration.registration_icp(
source, target, max_correspondence_distance_fine,
icp_coarse.transformation,
o3d.pipelines.registration.TransformationEstimationPointToPlane())
transformation_icp = icp_fine.transformation
information_icp = o3d.pipelines.registration.get_information_matrix_from_point_clouds(
source, target, max_correspondence_distance_fine,
icp_fine.transformation)
return transformation_icp, information_icp
def full_registration(pcds, max_correspondence_distance_coarse,
max_correspondence_distance_fine):
pose_graph = o3d.pipelines.registration.PoseGraph()
odometry = np.identity(4)
pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(odometry))
n_pcds = len(pcds)
for source_id in range(n_pcds):
for target_id in range(source_id + 1, n_pcds):
transformation_icp, information_icp = pairwise_registration(
pcds[source_id], pcds[target_id])
print("Build o3d.pipelines.registration.PoseGraph")
if target_id == source_id + 1: # odometry case
odometry = np.dot(transformation_icp, odometry)
pose_graph.nodes.append(
o3d.pipelines.registration.PoseGraphNode(np.linalg.inv(odometry)))
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(source_id,
target_id,
transformation_icp,
information_icp,
uncertain=False))
else: # loop closure case
pose_graph.edges.append(
o3d.pipelines.registration.PoseGraphEdge(source_id,
target_id,
transformation_icp,
information_icp,
uncertain=True))
return pose_graph
print("Full registration ...")
max_correspondence_distance_coarse = voxel_size * 15
max_correspondence_distance_fine = voxel_size * 1.5
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
pose_graph = full_registration(pcds_down,
max_correspondence_distance_coarse,
max_correspondence_distance_fine)
#Open3d使用函数global_optimization进行姿态图估计,可以选择两种类型的优化算法,分别是GlobalOptimizationGaussNewton和GlobalOptimizationLevenbergMarquardt。
# 比较推荐后一种的原因是因为它具有比较好的收敛性。GlobalOptimizationConvergenceCriteria类可以用来设置最大迭代次数和别的优化参数。
#GlobalOptimizationOption定于了两个参数。max_correspondence_distance定义了对应阈值。edge_prune_threshold是修剪异常边缘的阈值。reference_node是被视为全局空间的节点ID。
print("Optimizing PoseGraph ...")
option = o3d.pipelines.registration.GlobalOptimizationOption(
max_correspondence_distance=max_correspondence_distance_fine,
edge_prune_threshold=0.25,
reference_node=0)
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
o3d.pipelines.registration.global_optimization(
pose_graph, o3d.pipelines.registration.GlobalOptimizationLevenbergMarquardt(),
o3d.pipelines.registration.GlobalOptimizationConvergenceCriteria(), option)
#全局优化在姿态图上执行两次。
# 第一遍将考虑所有边缘的情况优化原始姿态图的姿态,并尽量区分不确定边缘之间的错误对齐。这些错误对齐将会产生小的 line process weights,他们将会在第一遍被剔除。
# 第二遍将会在没有这些边的情况下运行,产生更紧密地全局对齐效果。在这个例子中,所有的边都将被考虑为真实的匹配,所以第二遍将会立即终止。
#可视化操作
#使用```draw_geometries``函数可视化变换点云。
print("Transform points and display")
for point_id in range(len(pcds_down)):
print(pose_graph.nodes[point_id].pose)
pcds_down[point_id].transform(pose_graph.nodes[point_id].pose)
o3d.visualization.draw_geometries(pcds_down)
#得到合并的点云
#PointCloud是可以很方便的使用+来合并两组点云成为一个整体。
# 合并之后,将会使用voxel_down_sample进行重新采样。建议在合并之后对点云进行后处理,因为这样可以减少重复的点后者较为密集的点。
pcds = load_point_clouds(voxel_size)
pcd_combined = o3d.geometry.PointCloud()
for point_id in range(len(pcds)):
pcds[point_id].transform(pose_graph.nodes[point_id].pose)
pcd_combined += pcds[point_id]
pcd_combined_down = pcd_combined.voxel_down_sample(voxel_size=voxel_size)
o3d.io.write_point_cloud("multiway_registration.pcd", pcd_combined_down)
o3d.visualization.draw_geometries([pcd_combined_down])