在遥感图像处理时,通常因为图像太大,导致计算机内存不够,无法处理.将图像进行分块处理后,再对每一块进行处理将结果进行合并,既能减少计算机内存的负担,又能提高处理速度.
python代码
from osgeo import gdal import os import numpy as np def write_image(filename, img_proj, img_geotrans, img_data): # 判断栅格数据类型 if ‘int8‘ in img_data.dtype.name: datatype = gdal.GDT_Byte elif ‘int16‘ in img_data.dtype.name: datatype = gdal.GDT_UInt16 else: datatype = gdal.GDT_Float32 # 判断数组维度 if len(img_data.shape) == 3: img_bands, img_height, img_width = img_data.shape else: img_bands, (img_height, img_width) = 1, img_data.shape # 创建文件 driver = gdal.GetDriverByName(‘GTiff‘) image = driver.Create(filename, img_width, img_height, img_bands, datatype) image.SetGeoTransform(img_geotrans) image.SetProjection(img_proj) if img_bands == 1: image.GetRasterBand(1).WriteArray(img_data) else: for i in range(img_bands): image.GetRasterBand(i + 1).WriteArray(img_data[i]) del image # 删除变量,保留数据 def divide_image(path,m,n,out): in_ds1 = gdal.Open(path) # 读取原始图像文件信息 xsize = in_ds1.RasterXSize ysize = in_ds1.RasterYSize bands = in_ds1.RasterCount geotransform = in_ds1.GetGeoTransform() projection = in_ds1.GetProjectionRef() data = in_ds1.ReadAsArray(0, 0, xsize, ysize).astype(np.float32) data1=data*0.0 patch_ysize=int(ysize/n) patch_xsize = int(xsize / m) x_mod= xsize % m y_mod=ysize % n num=0 for i in range(1,n+1): for j in range(1,m+1): num += 1 outfile=out+"\\"+str(i)+‘_‘+str(j)+".tif" if i==n and j==m: div_image = data[:,(i - 1) * patch_ysize: i * patch_ysize+y_mod, (j - 1) * patch_xsize: j * patch_xsize + x_mod] elif i == n: div_image = data[:,(i - 1) * patch_ysize: i * patch_ysize + y_mod, (j - 1) * patch_xsize: j * patch_xsize] elif j == m: div_image = data[:,(i - 1) * patch_ysize: i * patch_ysize, (j - 1) * patch_xsize: j * patch_xsize + x_mod] else: div_image = data[:,(i - 1) * patch_ysize: i * patch_ysize, (j - 1) * patch_xsize: j * patch_xsize] write_image(outfile, projection, geotransform , div_image) return xsize, ysize, data1, projection, geotransform,x_mod,y_mod def merge_image(m,n,xsize,ysize,data1,projection, geotransform ,out,x_mod,y_mod): patch_ysize = int(ysize / n) patch_xsize = int(xsize / m) for i in range(1,n+1): for j in range(1,m+1): cut_image = out + "\\" + str(i) + ‘_‘ + str(j) + ".tif" in_ds1 = gdal.Open(cut_image) # 读取原始图像文件信息 xsize = in_ds1.RasterXSize ysize = in_ds1.RasterYSize data = in_ds1.ReadAsArray(0, 0, xsize, ysize).astype(np.float32) if i == n and j == m: data1[:,(i - 1) * patch_ysize: i * patch_ysize+y_mod, (j - 1) * patch_xsize: j * patch_xsize + x_mod]=data elif i == n: data1[:,(i - 1) * patch_ysize: i * patch_ysize + y_mod, (j - 1) * patch_xsize: j * patch_xsize]=data elif j == m: data1[:,(i - 1) * patch_ysize: i * patch_ysize, (j - 1) * patch_xsize: j * patch_xsize + x_mod]=data else: data1[:,(i - 1) * patch_ysize: i * patch_ysize, (j - 1) * patch_xsize: j * patch_xsize]=data outfile1=out+‘\\‘+‘merge.tif‘ write_image(outfile1, projection, geotransform ,data1) if __name__ == ‘__main__‘: path = r"D:\test\\test.tif" out=r"D:\data\实验结果\divide_image" #m代表行的分块数,n代表列的分块数 m = 8 n = 4 xsize, ysize, data1, projection, geotransform,x_mod,y_mod=divide_image(path,m,n,out) merge_image(m, n, xsize, ysize, data1, projection, geotransform, out,x_mod,y_mod)