用R做GLM的Summary相关指标解释
Residual
The term residual comes from the residual sum of squares (RSS), which is defined as
where the residual $r_i$ is $\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N$ defined as the difference between observed and predicted values, f(xi), from the observed value, yi.Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n−1)!∀n∈N 是通过 Euler integral
Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=∫0∞tz−1e−tdt.