题目
有n(n<=30)种立方体,每种有无穷多个,摞成尽量高的柱子,要求上面的立方体要严格小于下面的立方体.
原题链接
分析
顶面的大小会影响后续的决策,但不能直接用d[a][b]
来表示,因为可能有多个立方体长宽相等,因此用d[i][j](i<n,j<3)
表示第i个立方体的第j条边,为了方便比较大小,边按照从小大到排序.
每增加一个立方体后顶面的长宽都会严格减小,因此是一个DAG图上的最长路问题.
AC代码
#include "bits/stdc++.h"
using namespace std;
const int maxn = 35;
int n;
int blocks[maxn][3]; //存储第maxn个方块的3条边,且边是有序的
int d[maxn][3];
//得到第b个方块除了dim的两个高度
void get_dimensions(int *v, int b, int dim){
int idx = 0;
for(int i=0;i<3;i++){
if(i != dim)
v[idx++] = blocks[b][i];
}
}
//在第i个方块上,以第j个边为高最多可以达到的高度
int dp(int i, int j){
if(d[i][j]>0) return d[i][j];
d[i][j]=0;
int v1[2], v2[2];
get_dimensions(v1, i, j);
for(int a=0;a<n;a++){
for(int b=0;b<3;b++){
get_dimensions(v2, a, b);
if(v2[0]<v1[0] && v2[1]<v1[1]) //v2可以放到v1上面
d[i][j]=max(d[i][j], dp(a,b)); //
}
}
d[i][j]+=blocks[i][j]; //加上本身的高度
return d[i][j];
}
int main(int argc, char const *argv[])
{
int kase = 0, i, j;
while(cin >> n && n){
for(i=0;i<n;i++){
for(j=0;j<3;j++){
cin >> blocks[i][j];
}
sort(blocks[i], blocks[i]+3);
}
// cout << "q1";
memset(d, 0, sizeof(d));
int ans = 0;
for(i=0;i<n;i++){
for(j=0;j<3;j++){
ans = max(ans, dp(i,j));
}
}
cout << "Case " << ++kase << ": maximum height = " << ans << endl;
}
return 0;
}