Flink常用算子

Operators

  • map
    DataStream → DataStream

  • flatMap
    DataStream → DataStream

  • fliter
    DataStream → DataStream

  • keyBy
    DataStream → KeyedStream
    对数据进行分流

  • reduce
    KeyedStream/WindowedStream/AllWindowedStream → DataStream
    用于keyBy或者window/windowAll之后

  • window
    KeyedStream → WindowedStream
    用于keyBy之后

  • windowAll
    DataStream → AllWindowedStream
    不用于keyBy之后,此算子并行度始终为1

  • apply
    WindowedStream/AllWindowedStream → DataStream

  • union
    DataStream* → DataStream
    合并相同类型的流

  • join
    DataStream,DataStream → DataStream
    比较两条流中的元素,如果相等输出,否则不进行输出。

    dataStream.join(otherStream)
    .where().equalTo()
    .window(TumblingEventTimeWindows.of(Time.seconds(3)))
    .apply (new JoinFunction () {…});

  • Interval Join
    KeyedStream,KeyedStream → DataStream

    // this will join the two streams so that
    // key1 == key2 && leftTs - 2 < rightTs < leftTs + 2
    keyedStream.intervalJoin(otherKeyedStream)
    .between(Time.milliseconds(-2), Time.milliseconds(2)) // lower and upper bound
    .upperBoundExclusive(true) // optional
    .lowerBoundExclusive(true) // optional
    .process(new IntervalJoinFunction() {…});

  • CoGroup
    DataStream,DataStream → DataStream
    比较两条流中的元素,如果相等则放在一起输出,否则分开输出。重点是group。

    dataStream.coGroup(otherStream)
    .where(0).equalTo(1)
    .window(TumblingEventTimeWindows.of(Time.seconds(3)))
    .apply (new CoGroupFunction () {…});

  • Connect
    DataStream,DataStream → ConnectedStream
    “连接”两条数据流,并保留他们的类型(类型可以不一样)。连接允许两个流之间共享状态。

    DataStream someStream = //…
    DataStream otherStream = //…

    ConnectedStreams<Integer, String> connectedStreams = someStream.connect(otherStream);

  • CoMap, CoFlatMap
    ConnectedStream → DataStream
    专门针对ConnectedStream流的算子

    connectedStreams.map(new CoMapFunction<Integer, String, Boolean>() {
    @Override
    public Boolean map1(Integer value) {
    return true;
    }

    @Override
    public Boolean map2(String value) {
        return false;
    }
    

    });
    connectedStreams.flatMap(new CoFlatMapFunction<Integer, String, String>() {

    @Override
    public void flatMap1(Integer value, Collector out) {
    out.collect(value.toString());
    }

    @Override
    public void flatMap2(String value, Collector out) {
    for (String word: value.split(" ")) {
    out.collect(word);
    }
    }
    });

  • Iterate
    DataStream → IterativeStream → ConnectedStream
    一个流被分为两部分,一部分持续不断循环输出,另一部分正常输出。

    IterativeStream iteration = initialStream.iterate();
    DataStream iterationBody = iteration.map (/do something/);
    DataStream feedback = iterationBody.filter(new FilterFunction(){
    @Override
    public boolean filter(Long value) throws Exception {
    return value > 0;
    }
    });
    iteration.closeWith(feedback);
    DataStream output = iterationBody.filter(new FilterFunction(){
    @Override
    public boolean filter(Long value) throws Exception {
    return value <= 0;
    }
    });

上一篇:模型选择


下一篇:机器学习——性能指标