0.说明
在同一个网络(无特别说明,均指以太网络)中进行通信的主机,必须要拥有目标主机的MAC地址才能够正确地将数据发送给目标主机,那么如何知道目标主机的MAC地址呢?可以通过ARP协议。ARP协议就是用来获取目标IP地址所对应的MAC地址的,也就是说,ARP协议可以动态地在三层IP地址和二层MAC地址之间建立一种映射关系。可以用如下示意图来形象表示其作用:
可以看到上面的图示是把ARP协议划分到网络层,也既是认为它是一个网络层的协议,这是出于它为网络层的IP协议提供服务而考虑的。但实际上,由于ARP协议用以解析出IP地址(逻辑地址)所对应数据链路层中的地址(物理地址/硬件地址),所以把其划分在数据链路层也是没有问题的,这并没有严格的定义。
我们下面将通过具体的实践过程来分析四种常见的ARP包:ARP请求包、ARP响应包、无偿ARP包与IP地址冲突检测,同时也会分析一下ARP代理的发生过程。
这里会使用的环境如下:
-
网络设备模拟器:GNS3
-
抓包软件:Wireshark
1.网络环境搭建
为了简洁起见,这里不设置一个较大的网络环境来满足前面四种情况ARP包分析的需要,而是在分析不同的ARP情况时分别搭建较小的网络环境,这样可以使我们的分析更有针对性。
2.ARP包报文格式
如下:
注意我们关注的是28字节的ARP包,只不过上面的图还包含了以太网首部字段信息(显然以太网首部的帧类型为ARP,在分析IP协议时提到过,这是一个数据分用的概念)。
因为对于ARP包的分析,其实我们更关心的应该是ARP请求包、ARP响应包、无偿ARP包或者ARP代理相关的知识,而后面的实践也主要是分类地进行讨论。所以下面先给出一个普通ARP包(请求包)的实际结构,然后再给出每一个字段的具体含义(参考了《TCP/IP详解 卷1:协议》的部分内容),先作一个基本的了解,最后再详细分析这些包产生的过程:
-
一个普通ARP包(请求包的实际结构)
-
ARP包各字段具体含义(对比上面实际抓到的包)
字段 | 含义 |
硬件类型 |
占16位 表示硬件地址的类型,值为1即表示以太网地址,也就是MAC地址 |
协议类型 |
点16位 表示要映射的协议地址类型,值为0x0800即表示IP地址,因为本文都是在IP协议的基础上进行分析的(即网络层逻辑地址为IP地址),所以所抓到的包的该字段类型都为0x0800 |
硬件地址长度 |
占8位 指出硬件地址的长度,单位为字节,因为本文针对的是以太网,而以太网地址为MAC地址,占48位,即6字节,所以后面抓到的包中该字段的值都为6,不再作特别说明 |
协议地址长度 |
占8位 指出三层逻辑地址的长度,单位为字节,因为本文针对的是以太网地址和IP地址的映射,而IP地址占32位,即6字节,所以后面抓到的包中该字段的值都为4,不再作特别说明 |
操作字段 |
指出操作类型,对应的值如下:
但因为RARP现在已经很少使用了,所以本文不会讨论 |
发送端以太网地址 |
占48位 准确上说是“发送端硬件地址”,但因为本文只针对以太网进行讨论,所以表述为“发送端以太网地址” |
发送端IP地址 |
占32位 准确上说是“发送端网络层逻辑地址”,但因为本文只针对的是以太网地址和IP地址的映射的讨论,所以表述为“发送端IP地址” |
目的以太网地址 | 占48位 |
目的IP地址 | 占32位 |
3.在实践中分析ARP的实现过程:ARP请求、ARP响应
(1)网络环境搭建
本节主要是抓取ARP请求包和ARP响应包来分析ARP请求与响应的一个详细过程,以及对应ARP包中相关字段的含义,这个实践的网络环境比较简单,如下:
在R1路由器上做如下配置:
1
2
3
4
5
|
R1 #conf t
R1(config) #int f0/0
R1(config- if ) #no shu
R1(config- if ) #ip add 192.168.1.1 255.255.255.0
R1(config- if ) #do wr
|
在R2路由器上做如下配置:
1
2
3
4
5
|
R2 #conf t
R2(config) #int f0/0
R2(config- if ) #no shu
R2(config- if ) #ip add 192.168.1.2 255.255.255.0
R2(config- if ) #do wr
|
然后在R1路由器上查看arp缓存表:
1
2
3
|
R1 #show arp
Protocol Address Age (min) Hardware Addr Type Interface Internet 192.168.1.1 - cc01.127f.0000 ARPA FastEthernet0 /0
|
可以看到arp缓存表中并没有192.168.1.2的MAC地址,所以如果待会R1发送数据给R2,必然会有ARP请求发生,所以这里请确保R1中确实没有192.168.1.2的MAC地址,如果有的话,建议重启两个路由器。(虽然可以在路由器上执行clear arp-cache来清除arp缓存表,但是清除过后又会马上生成,所以这里建议直接重启)
(2)抓取并分析ARP请求包和ARP响应包
首先在R1和R2的链路上启动Wireshark,监测R1的接口。(这是GNS3的功能,可以直接抓取通过两个路由器之间链路的数据包)
在R1上执行如下命令:
1
2
3
4
5
6
|
Router #ping 192.168.1.2
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.2, timeout is 2 seconds: .!!!! Success rate is 80 percent (4 /5 ), round-trip min /avg/max = 44 /62/76 ms
|
!表示数据发送成功,可以看到第一个是".",则表示数据发送失败,这是因为,第一个包在发送时,R1中并没有192.168.1.2的MAC地址,于是就去发送ARP请求来获得其MAC地址,但是当获得MAC地址之后,第一个包已经超时了(等待MAC地址超时),并没有发送出去,可以看下面抓到的包:
可以看到已经有2个ARP包(1个请求和1回答)和8个ICMP包(4个请求和4个回答),这里我们主要分析的是ARP包。
-
ARP请求包
数据包结构如下:
字段分析如下:
a.硬件类型、协议类型、硬件地址长度、协议地址长度
这几个字段的内容跟前面讨论的一样,因为针对的是以太网和IP地址
b.操作字段Opcode
可以看到Opcode的值为request(1),所以这是一个ARP请求包。
c.发送端以太网地址
我们是从R1向R2发送数据的。
从前面的命令执行结果:
1
2
3
|
R1 #show arp
Protocol Address Age (min) Hardware Addr Type Interface Internet 192.168.1.1 - cc01.127f.0000 ARPA FastEthernet0 /0
|
这确实是R1的MAC地址(配置了192.168.1.1 IP地址的接口的MAC地址)。
d.发送端IP地址
发送端也确实是192.168.1.1,也就是R1。
e.目的以太网地址
可以看到这里为全0,在ARP请求包中,会把目的以太网地址字段的值置为全0,因为此时并不知道目的以太网地址是什么(也就是不知道192.168.1.2的MAC地址是多少)。
f.目的IP地址
数据包是从R1发送给R2的,所以目的IP地址就是192.168.1.2,R2收到这个ARP请求包之后,如果看到这个字段的内容是自己的IP地址,就会回复这个ARP包,也就是会发送一个ARP响应包。
其实字段内容并不难理解,不过这里需要注意一点是,查看这个ARP请求包的数据链路层的目的MAC地址:
会发现其是一个广播地址,这也就意味着,发送一个ARP请求包,以太网中的所有主机都能够收到该ARP请求包,但是并不是所有的主机都会回复这个ARP请求包,只有当接收者的IP地址与ARP请求包中的Target IP address中标识的目的IP地址一致时才会进行回复。
-
ARP响应包
数据包结构如下:
对比ARP请求包来分析,其实发现并没有相关多少,只是有以下几点区别:
a.ARP响应包的操作字段Opcode值为reply(2)
b.ARP响应包的二层目的MAC地址为ARP请求包发送者的MAC地址
也就是说,ARP请求包是以广播的形式发送的,但ARP则是以单播的形式发送的,那么发给谁呢?ARP请求包是谁发送的,ARP响应包就发给谁,对应的二层目的MAC地址就是ARP请求包发送者的MAC地址
c.发送端以太网地址、发送端IP地址、目的以太网地址、目的IP地址
跟ARP请求包的内容相反,只不过ARP响应包中的所有地址字段的值都是已知的,这个很容易理解,不过需要注意的是,在这个时候,ARP响应包到底要发给谁,已经很明确了,所以ARP响应包是一个单播包。
正如上面看到的,理解常规的ARP请求包和ARP响应包的过程并不复杂,只要知道了网络通信的基本原理,各个字段的值也就很容易理解了。
4.在实践中分析ARP的实现过程:无偿ARP与IP地址冲突检测
-
有偿ARP
前面在获取某个IP地址对应的MAC地址是,都需要先发送一个ARP请求包,然后再通过接收一个ARP响应包来知道该IP地址所对应的MAC地址,因为需要发送ARP请求包,我们可以认为这是“有偿”的,即要付出一些代价。
-
无偿ARP
而所谓无偿ARP,指的就是,我不需要发送一个ARP请求包,对方就会“无偿”地把一个ARP响应包发给我(其实也主是主动发送过来),以此来告诉我它的MAC地址。
(1)网络环境搭建
但是在总结什么时候对方会主动把一个ARP响应包发送过来之前,我们先实践一下,网络环境还是用上面的那个:
不过我们需要修改一下R2的IP地址,修改为192.168.1.252(在这个过程中抓包软件Wireshark要打开),如下:
1
2
3
4
|
R2>en R2 #conf t
R2(config) #int f0/0
R2(config- if ) #ip add 192.168.1.252 255.255.255.0
|
(2)抓取并分析ARP请求包和ARP响应包
这样做之后打开Wireshark软件,会发现抓到下面这样一个包:
可以看到Info一列,有个Gratutous的标识,中文意思就是“无偿,免费”的意思,我们可以查看一下数据包的结构:
通过查看操作字段Opcode的值,其实可以发现,无偿ARP其实也是一个ARP响应包(不过普通的ARP响应包是以单播的形式发送的,而无偿ARP是以广播的形式发送的),只不过这个ARP响应包比较特别,它是主动发送的,即它是gratuitous,无偿的。
另外需要注意的是,发送端IP地址和目的IP地址是一样,这正是无偿ARP有别于普通ARP响应包的地方,当这个数据包被网络中的其他主机(显然我们这里的网络环境比较简单,所以只有R1)接收到之后,它会让这些主机使用新的IP和MAC地址关系更新它们的ARP缓存表。因为这个ARP数据包是未经请求的,即导致客户端更新ARP缓存,所以会称为无偿ARP。
在分析了无偿ARP之后,给出下面的几种情况,都会有无偿ARP过程的发生:
a.更改了设备的IP地址
b.某些操作系统在启动完成之后就会发送无偿ARP(Windows和Linux都会)
(3)IP地址冲突检测
再分析一下,无偿ARP有什么好处呢?如下:
a.可以让以太网中的主机及时地更新其ARP缓存表,这样可以确保在数据发送时可以准确地封闭正确的地址信息
b.检测IP地址是否有冲突
关于这一点,可以给R2重新配置一个IP地址,并且与R1的相同:
1
2
3
4
|
R2>en R2 #conf t
R2(config) #int f0/0
R2(config- if ) #ip add 192.168.1.1 255.255.255.0
|
几乎马上就可以在R1和R2的控制台上看到错误日志的输出:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
R1> *Mar 1 00:54:39.007: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc02.1a18.0000
*Mar 1 00:55:09.043: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc02.1a18.0000
*Mar 1 00:55:39.739: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc02.1a18.0000
*Mar 1 00:56:10.011: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc02.1a18.0000
*Mar 1 00:56:40.715: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc02.1a18.0000
*Mar 1 00:57:10.947: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc02.1a18.0000
R2(config- if ) #
*Mar 1 00:45:48.135: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc01.127f.0000
*Mar 1 00:46:18.623: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc01.127f.0000
*Mar 1 00:46:48.927: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc01.127f.0000
*Mar 1 00:47:19.651: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc01.127f.0000
*Mar 1 00:47:49.959: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc01.127f.0000
*Mar 1 00:48:21.623: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc01.127f.0000
*Mar 1 00:48:51.919: %IP-4-DUPADDR: Duplicate address 192.168.1.1 on FastEthernet0 /0 , sourced by cc01.127f.0000
|
这里因为在修改了R2的IP地址时,它发送了无偿ARP包,R1通过检查发现其IP地址跟自己的一样,于是就会在控制台上报错,但是R2为什么又会报错呢?因为在R1发现地址有冲突时,也发送了表示IP地址冲突的无偿ARP包,如下:
根据数据包的内容,R2也知道发生了IP地址冲突,所以也就会在控制台上输出错误日志了。
4.在实践中分析ARP的实现过程:ARP代理
如果ARP请求是从一个网络的主机发往另一个网络上的主机,那么连接这两个网络的路由器就可以回答这个请求,这个过程就称为ARP代理。这是非常精简和通俗易懂的解释,我们可以通过下面的实践来进行体会。
(1)网络环境搭建
如下:
在前面的基础上,R1增加如下配置:
1
2
3
|
R1>en R1 #conf t
R1(config) #ip route 0.0.0.0 0.0.0.0 f0/0
|
R2增加如下配置:
1
2
3
4
5
6
|
R2>en R2 #conf t
R2(config) #int f1/0
R2(config- if ) #no shu
R2(config- if ) #ip add 192.168.2.2 255.255.255.0
R2(config- if ) #do wr
|
R3则配置如下:
1
2
3
4
5
6
7
|
R3>en R3 #conf t
R3(config) #int f0/0
R3(config- if ) #no shu
R3(config- if ) #ip add 192.168.2.3 255.255.255.0
R3(config- if ) #ip route 0.0.0.0 0.0.0.0 f0/0
R3(config- if ) #do wr
|
(2)抓取ARP包并分析ARP代理过程
在R1和R2的链路上启动Wireshark,然后在R1上执行如下命令:
1
2
3
4
5
6
|
R1 #ping 192.168.2.3
Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.2.3, timeout is 2 seconds: ...!! Success rate is 40 percent (2 /5 ), round-trip min /avg/max = 36 /50/64 ms
|
即R1给R3发送数据,我们查看抓到的包:
-
ARP请求包
可以看到ARP请求包跟平常一样,并没有什么区别,即R1希望知道192.168.2.3的MAC地址。
-
ARP响应包
看起来普通的ARP响应包也没有什么区别,其实真的是没有什么区别,但不妨在R2上执行下面的命令,查看一下ARP缓存表:
1
2
3
4
5
6
|
R2 #sh arp
Protocol Address Age (min) Hardware Addr Type Interface Internet 192.168.1.1 3 cc01.127f.0000 ARPA FastEthernet0 /0
Internet 192.168.2.2 - cc02.1a18.0010 ARPA FastEthernet1 /0
Internet 192.168.2.3 3 cc03.2327.0000 ARPA FastEthernet1 /0
Internet 192.168.1.2 - cc02.1a18.0000 ARPA FastEthernet0 /0
|
在这个ARP缓存表中,192.168.2.3对应的MAC地址是cc03.2327.0000,并不是上面看到的数据包结构中的cc02.1a18.0000!!!cc02.1a18.0000是192.168.1.2对应的MAC地址!!!可以分析如下:
拓展1: R1想要知道192.168.2.3的MAC地址,于是发送ARP请求包,但很显然,192.168.2.3跟192.168.1.1并不在同一个网络中;当192.168.1.2接口接收到这个ARP请求包时,R2发现虽然192.168.2.3并不是自己,但是它可以到达192.168.2.3所在的网络,即192.168.2.0/24这个网络,于是它就向R1发回了一个ARP响应包,告诉R1,192.168.2.3的MAC地址是自己(即配置了192.168.1.2的接口的MAC地址)。虽然这是一种“谎言”,但由于这样做确实是可以帮R1把数据发送到R3,所以有时候我们也把ARP代理称作“善意的谎言”。 拓展2: 这也意味着,即使R1知道192.168.2.3跟自己在不同的网络,它也不会直接就说去请求网关的MAC地址(虽然最终数据肯定是先发往网关的),而是还会像平常请求同网段IP地址的MAC地址一样,去发送一个普通的ARP请求,这点尤其需要注意。 拓展3: 我们说,如果数据是发往不同的网络的,那么应该先把数据发给网关,那么上面为什么不是这样的呢?那是因为,我在配置R1的默认路由时,是以出接口的方式进行配置的,那也就意味着,并没有所谓的网关,即不知道网关是谁,既然如果,R1又怎么能够直接去请求网关的MAC地址呢?对它来说,根本就没有网关!但是又因为配置了默认路由,去往未知网络的数据都直接从1.1的接口发送出去,所以它是直接去请求目的IP地址的MAC地址,然后才有了后来的ARP代理过程的发生。当然,如果配置的是网关(在思科路由器上的配置是:ip route 0.0.0.0 0.0.0.0 下一跳即网关地址),则会按照正常的流程走,即没有代理ARP过程的发生。 这一点对于数据转发的深入理解是非常重要的,当然,如果觉得难以理解的,也不用太担心,这个需要一定时间的积累,同时自己也要注重思考,在实际的学习过程当中不能囫囵吞枣,要想有深入的理解,就必须要做深入的分析。 |
那么通过上面的实践过程和分析之后也就非常清楚什么是ARP代理了。即如果ARP请求是从一个网络的主机发往另一个网络上的主机,那么连接这两个网络的路由器就可以回答这个请求,这个过程就称为ARP代理。
上面这个过程需要体会一下,这样一来的话,相信对计算机网络通信又会有了更深入的了解。
5.下一步要做什么
首先有时间当然是自己也尝试把上面的实践完成一遍,好好分析一下ARP协议,其实ARP协议所涉及到的重要的内容,上面的实践过程基本上都已经全部给出,真的不能错过。
如果觉得自己已经掌握了的话,可以尝试去了解一下ARP欺骗的原理,看看其实是不是很简单。
请继续关注香飘叶子51cto博客的博客专题《在实践中深入理解常见网络协议》的系列文章,有问题可以留言提问,谢谢大家!