前面我们介绍了如何在 C 语言中引入面向对象语言的一些特性来进行面向对象编程,从本篇开始,我们使用前面提到的技巧,陆续实现几个例子,最后呢,会提供一个基本的 http server 实现(使用 libevent )。在这篇文章里,我们实现一个通用的数据结构:单链表。
这里实现的单链表,可以存储任意数据类型,支持增、删、改、查找、插入等基本操作。(本文提供的是完整代码,可能有些长。)
下面是头文件:
#ifndef SLIST_H #define SLIST_H #ifdef __cplusplus extern "C" { #endif #define NODE_T(ptr, type) ((type*)ptr) struct slist_node { struct slist_node * next; }; typedef void (*list_op_free_node)(struct slist_node *node); /* * return 0 on hit key, else return none zero */ typedef int (*list_op_key_hit_test)(struct slist_node *node, void *key); struct single_list { /* all the members must not be changed manually by callee */ struct slist_node * head; struct slist_node * tail; int size; /* length of the list, do not change it manually*/ /* free method to delete the node */ void (*free_node)(struct slist_node *node); /* * should be set by callee, used to locate node by key(*_by_key() method) * return 0 on hit key, else return none zero */ int (*key_hit_test)(struct slist_node *node, void *key); struct single_list *(*add)(struct single_list * list, struct slist_node * node); struct single_list *(*insert)(struct single_list * list, int pos, struct slist_node *node); /* NOTE: the original node at the pos will be freed by free_node */ struct single_list *(*replace)(struct single_list *list, int pos, struct slist_node *node); struct slist_node *(*find_by_key)(struct single_list *, void * key); struct slist_node *(*first)(struct single_list* list); struct slist_node *(*last)(struct single_list* list); struct slist_node *(*at)(struct single_list * list, int pos); struct slist_node *(*take_at)(struct single_list * list, int pos); struct slist_node *(*take_by_key)(struct single_list * list, void *key); struct single_list *(*remove)(struct single_list * list, struct slist_node * node); struct single_list *(*remove_at)(struct single_list *list, int pos); struct single_list *(*remove_by_key)(struct single_list *list, void *key); int (*length)(struct single_list * list); void (*clear)(struct single_list * list); void (*deletor)(struct single_list *list); }; struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp); #ifdef __cplusplus } #endif #endif // SLIST_H
struct single_list 这个类,遵循我们前面介绍的基本原则,不再一一细说。有几点需要提一下:
- 我们定义了 slist_node 作为链表节点的基类,用户自定义的节点,都必须从 slist_node 继承
- 为了支持节点( node )的释放,我们引入一个回调函数 list_op_free_node ,这个回调需要在创建链表时传入
- 为了支持查找,引入另外一个回调函数 list_op_key_hit_test
好了,下面看实现文件:
#include "slist.h" #include <malloc.h> static struct single_list * _add_node(struct single_list *list, struct slist_node *node) { if(list->tail) { list->tail->next = node; node->next = 0; list->tail = node; list->size++; } else { list->head = node; list->tail = node; node->next = 0; list->size = 1; } return list; } static struct single_list * _insert_node(struct single_list * list, int pos, struct slist_node *node) { if(pos < list->size) { int i = 0; struct slist_node * p = list->head; struct slist_node * prev = list->head; for(; i < pos; i++) { prev = p; p = p->next; } if(p == list->head) { /* insert at head */ node->next = list->head; list->head = node; } else { prev->next = node; node->next = p; } if(node->next == 0) list->tail = node; list->size++; } else { list->add(list, node); } return list; } static struct single_list * _replace(struct single_list * list, int pos, struct slist_node *node) { if(pos < list->size) { int i = 0; struct slist_node * p = list->head; struct slist_node * prev = list->head; for(; i < pos; i++) { prev = p; p = p->next; } if(p == list->head) { /* replace at head */ node->next = list->head->next; list->head = node; } else { prev->next = node; node->next = p->next; } if(node->next == 0) list->tail = node; if(list->free_node) list->free_node(p); else free(p); } return list; } static struct slist_node * _find_by_key(struct single_list *list, void * key) { if(list->key_hit_test) { struct slist_node * p = list->head; while(p) { if(list->key_hit_test(p, key) == 0) return p; p = p->next; } } return 0; } static struct slist_node *_first_of(struct single_list* list) { return list->head; } static struct slist_node *_last_of(struct single_list* list) { return list->tail; } static struct slist_node *_node_at(struct single_list * list, int pos) { if(pos < list->size) { int i = 0; struct slist_node * p = list->head; for(; i < pos; i++) { p = p->next; } return p; } return 0; } static struct slist_node * _take_at(struct single_list * list, int pos) { if(pos < list->size) { int i = 0; struct slist_node * p = list->head; struct slist_node * prev = p; for(; i < pos ; i++) { prev = p; p = p->next; } if(p == list->head) { list->head = p->next; if(list->head == 0) list->tail = 0; } else if(p == list->tail) { list->tail = prev; prev->next = 0; } else { prev->next = p->next; } list->size--; p->next = 0; return p; } return 0; } static struct slist_node * _take_by_key(struct single_list * list, void *key) { if(list->key_hit_test) { struct slist_node * p = list->head; struct slist_node * prev = p; while(p) { if(list->key_hit_test(p, key) == 0) break; prev = p; p = p->next; } if(p) { if(p == list->head) { list->head = p->next; if(list->head == 0) list->tail = 0; } else if(p == list->tail) { list->tail = prev; prev->next = 0; } else { prev->next = p->next; } list->size--; p->next = 0; return p; } } return 0; } static struct single_list *_remove_node(struct single_list * list, struct slist_node * node) { struct slist_node * p = list->head; struct slist_node * prev = p; while(p) { if(p == node) break; prev = p; p = p->next; } if(p) { if(p == list->head) { list->head = list->head->next; if(list->head == 0) list->tail = 0; } else if(p == list->tail) { prev->next = 0; list->tail = prev; } else { prev->next = p->next; } if(list->free_node) list->free_node(p); else free(p); list->size--; } return list; } static struct single_list *_remove_at(struct single_list *list, int pos) { if(pos < list->size) { int i = 0; struct slist_node * p = list->head; struct slist_node * prev = p; for(; i < pos ; i++) { prev = p; p = p->next; } if(p == list->head) { list->head = p->next; if(list->head == 0) list->tail = 0; } else if(p == list->tail) { list->tail = prev; prev->next = 0; } else { prev->next = p->next; } if(list->free_node) list->free_node(p); else free(p); list->size--; } return list; } static struct single_list *_remove_by_key(struct single_list *list, void *key) { if(list->key_hit_test) { struct slist_node * p = list->head; struct slist_node * prev = p; while(p) { if(list->key_hit_test(p, key) == 0) break; prev = p; p = p->next; } if(p) { if(p == list->head) { list->head = list->head->next; if(list->head == 0) list->tail = 0; } else if(p == list->tail) { prev->next = 0; list->tail = prev; } else { prev->next = p->next; } if(list->free_node) list->free_node(p); else free(p); list->size--; } } return list; } static int _length_of(struct single_list * list) { return list->size; } static void _clear_list(struct single_list * list) { struct slist_node * p = list->head; struct slist_node * p2; while(p) { p2 = p; p = p->next; if(list->free_node) list->free_node(p2); else free(p2); } list->head = 0; list->tail = 0; list->size = 0; } static void _delete_single_list(struct single_list *list) { list->clear(list); free(list); } struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp) { struct single_list *list = (struct single_list *)malloc(sizeof(struct single_list)); list->head = 0; list->tail = 0; list->size = 0; list->free_node = op_free; list->key_hit_test = op_cmp; list->add = _add_node; list->insert = _insert_node; list->replace = _replace; list->find_by_key = _find_by_key; list->first = _first_of; list->last = _last_of; list->at = _node_at; list->take_at = _take_at; list->take_by_key = _take_by_key; list->remove = _remove_node; list->remove_at = _remove_at; list->remove_by_key = _remove_by_key; list->length = _length_of; list->clear = _clear_list; list->deletor = _delete_single_list; return list; }
上面的代码就不一一细说了,下面是测试代码:
/* call 1 or N arguments function of struct */ #define ST_CALL(THIS,func,args...) ((THIS)->func(THIS,args)) /* call none-arguments function of struct */ #define ST_CALL_0(THIS,func) ((THIS)->func(THIS)) struct int_node { struct slist_node node; int id; }; struct string_node { struct slist_node node; char name[16]; }; static int int_free_flag = 0; static void _int_child_free(struct slist_node *node) { free(node); if(!int_free_flag) { int_free_flag = 1; printf("int node free\n"); } } static int _int_slist_hittest(struct slist_node * node, void *key) { struct int_node * inode = NODE_T(node, struct int_node); int ikey = (int)key; return (inode->id == ikey ? 0 : 1); } static int string_free_flag = 0; static void _string_child_free(struct slist_node *node) { free(node); if(!string_free_flag) { string_free_flag = 1; printf("string node free\n"); } } static int _string_slist_hittest(struct slist_node * node, void *key) { struct string_node * sn = (struct string_node*)node; return strcmp(sn->name, (char*)key); } void int_slist_test() { struct single_list * list = new_single_list(_int_child_free, _int_slist_hittest); struct int_node * node = 0; struct slist_node * bn = 0; int i = 0; printf("create list && nodes:\n"); for(; i < 100; i++) { node = (struct int_node*)malloc(sizeof(struct int_node)); node->id = i; if(i%10) { list->add(list, node); } else { list->insert(list, 1, node); } } printf("create 100 nodes end\n----\n"); printf("first is : %d, last is: %d\n----\n", NODE_T( ST_CALL_0(list, first), struct int_node )->id, NODE_T( ST_CALL_0(list, last ), struct int_node )->id); assert(list->size == 100); printf("list traverse:\n"); for(i = 0; i < 100; i++) { if(i%10 == 0) printf("\n"); bn = list->at(list, i); node = NODE_T(bn, struct int_node); printf(" %d", node->id); } printf("\n-----\n"); printf("find by key test, key=42:\n"); bn = list->find_by_key(list, (void*)42); assert(bn != 0); node = NODE_T(bn, struct int_node); printf("find node(key=42), %d\n------\n", node->id); printf("remove node test, remove the 10th node:\n"); bn = list->at(list, 10); node = NODE_T(bn, struct int_node); printf(" node 10 is: %d\n", node->id); printf(" now remove node 10\n"); list->remove_at(list, 10); printf(" node 10 was removed, check node 10 again:\n"); bn = list->at(list, 10); node = NODE_T(bn, struct int_node); printf(" now node 10 is: %d\n------\n", node->id); printf("replace test, replace node 12 with id 1200:\n"); bn = list->at(list, 12); node = NODE_T(bn, struct int_node); printf(" now node 12 is : %d\n", node->id); node = (struct int_node*)malloc(sizeof(struct int_node)); node->id = 1200; list->replace(list, 12, node); bn = list->at(list, 12); node = NODE_T(bn, struct int_node); printf(" replaced, now node 12 is : %d\n----\n", node->id); printf("test remove:\n"); ST_CALL(list, remove, bn); bn = ST_CALL(list, find_by_key, (void*)1200); assert(bn == 0); printf("test remove ok\n----\n"); printf("test remove_by_key(90):\n"); ST_CALL(list, remove_by_key, (void*)90); bn = ST_CALL(list, find_by_key, (void*)90); assert(bn == 0); printf("test remove_by_key(90) end\n----\n"); printf("test take_at(80):\n"); bn = ST_CALL(list, take_at, 80); printf(" node 80 is: %d\n", NODE_T(bn, struct int_node)->id); free(bn); printf("test take_at(80) end\n"); int_free_flag = 0; printf("delete list && nodes:\n"); list->deletor(list); printf("delete list && nodes end\n"); printf("\n test add/insert/remove/delete/find_by_key/replace...\n"); } void string_slist_test() { struct single_list * list = new_single_list(_string_child_free, _string_slist_hittest); } void slist_test() { int_slist_test(); string_slist_test(); }
测试代码里主要演示了:
- 自定义链表节点类型
- 定义释放回调
- 定义用于查找的 hit test 回调
- 如何创建链表
- 如何使用( add 、remove 、 take 、find 、 insert 等)
相信到这里,单链表的使用已经不成问题了。
以单链表为基础,可以进一步实现很多数据结构,比如树(兄弟孩子表示法),比如 key-value 链表等等。接下来根据例子的需要,会择机进行展示。