可以发现如果我们最终选择的物品集合已经确定,就很好求了
\(\sum k*t+\sum b \geqslant s\) ,二分即可
但现在我们无法确定该选哪些物品
因此我们只需要check一下0时刻是否符合条件,如果不符合则进行二分。
注意check的时候我们只需要找出最大的 \(m\) 个即可
有点玄学。
证一下它有单调性:
因为保证有解,令存在一个解为时刻 \(t\)
那么此时存在一个 \(\sum k*t+\sum b \geqslant s\)
考虑时刻 \(t+1\),发现多了个 \(\sum k\)
若 \(\sum k > 0\) ,可以二分
若 \(\sum k \leqslant 0\) ,0时刻一定更优,不必二分
- 有空复习下nth_element的使用
Code:
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 1000010
#define ll long long
#define reg register int
//#define int long long
char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline ll read() {
ll ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
}
int n, m; ll s;
ll k[N], b[N];
const double eps=1e-8;
namespace force{
ll ans=(ll)(1e18);
void solve() {
int lim=1<<n;
double k1, b1, s1=s, t;
for (reg s=1,s2,cnt; s<lim; ++s) {
k1=0; b1=0; cnt=0; s2=s;
do {s2&=(s2-1); ++cnt;} while (s2);
if (cnt>m) continue;
for (reg i=0; i<n; ++i) if (s&(1<<i))
k1+=k[i+1], b1+=b[i+1];
t=(s1-b1)/k1;
//cout<<"t: "<<t<<' '<<bitset<5>(s)<<endl;
if (ceil(t)>=-eps && k1*ceil(t)+b1>=s1-eps) ans=min(ans, (ll)ceil(t));
if (floor(t)>=-eps && k1*floor(t)+b1>=s1-eps) ans=min(ans, (ll)floor(t));
}
printf("%lld\n", ans);
exit(0);
}
}
namespace task1{
ll tem[N];
inline bool cmp(ll a, ll b) {return a>b;}
bool check(ll t) {
for (reg i=1; i<=n; ++i) tem[i]=k[i]*t+b[i];
sort(tem+1, tem+n+1, cmp);
ll sum=0;
for (reg i=1; i<=m; ++i)
if ((sum+=tem[i])>=s) return 1;
return 0;
}
void solve() {
ll l=0, r=(ll)(1e9), mid;
while (l<=r) {
mid=(l+r)>>1;
if (!check(mid)) l=mid+1;
else r=mid-1;
}
printf("%lld\n", l);
exit(0);
}
}
namespace task{
ll tem[N];
inline bool cmp(ll a, ll b) {return a>b;}
bool check(ll t) {
//cout<<"check "<<t<<endl;
for (reg i=1; i<=n; ++i) tem[i]=k[i]*t+b[i];
nth_element(tem+1, tem+m, tem+n+1, cmp);
//cout<<"tem: "; for (int i=1; i<=n; ++i) cout<<tem[i]<<' '; cout<<endl;
ll sum=0;
for (reg i=1; i<=m; ++i) if (tem[i]>0 && (sum+=tem[i])>=s) return 1;
return 0;
}
void solve() {
for (int i=1; i<=n; ++i) tem[i]=b[i];
sort(tem+1, tem+n+1, cmp);
ll sum=0;
for (reg i=1; i<=m; ++i) if ((sum+=tem[i])>=s) {puts("0"); exit(0);}
ll l=0, r=(ll)(1e9), mid;
while (l<=r) {
mid=(l+r)>>1;
if (!check(mid)) l=mid+1;
else r=mid-1;
}
printf("%lld\n", l);
exit(0);
}
}
signed main()
{
bool geq=1, leq=1;
n=read(); m=read(); s=read();
for (int i=1; i<=n; ++i) {
k[i]=read(); b[i]=read();
if (b[i]>=s) {puts("0"); return 0;}
if (k[i]>0) leq=0;
else if (k[i]<0) geq=0;
}
//if (n<=20) force::solve();
//else if (geq) task1::solve();
//else if (leq) {puts("0"); return 0;}
task::solve();
return 0;
}