进程与线程理论基础
1、背景知识
理论基础:
一 操作系统的作用:
1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口
2:管理、调度进程,并且将多个进程对硬件的竞争变得有序
二 多道技术:
1.产生背景:针对单核,实现并发(现在的主机一般是多核,那么每个核都会利用多道技术,但是核与核之间没有使用多道技术切换这么一说,一个程序io阻塞,会等到io结束再重新调度)
2.时间上的复用(复用一个cpu的时间片)+空间上的复用(如内存中同时有多道程序)
2、进程
2.1 什么是进程
进程:正在进行的一个过程或者说一个任务。而负责执行任务则是cpu。
2.2 进程与程序的区别
程序仅仅只是一堆代码而已,而进程指的是程序的运行过程。
2.3 并发与并行
无论是并行还是并发,在用户看来都是'同时'运行的,不管是进程还是线程,都只是一个任务而已,真是干活的是cpu,cpu来做这些任务,而一个cpu同一时刻只能执行一个任务
一 并发:是伪并行,即看起来是同时运行。单个cpu+多道技术就可以实现并发,(并行也属于并发)
二 并行:同时运行,只有具备多个cpu才能实现并行
单核下,可以利用多道技术,多个核,每个核也都可以利用多道技术(多道技术是针对单核而言的)
有四个核,六个任务,这样同一时间有四个任务被执行,假设分别被分配给了cpu1,cpu2,cpu3,cpu4,
一旦任务1遇到I/O就*中断执行,此时任务5就拿到cpu1的时间片去执行,这就是单核下的多道技术
而一旦任务1的I/O结束了,操作系统会重新调用它(需知进程的调度、分配给哪个cpu运行,由操作系统说了算),可能被分配给四个cpu中的任意一个去执行
2.4 同步与异步
同步执行:一个进程在执行某个任务时,另外一个进程必须等待其执行完毕,才能继续执行
异步执行:一个进程在执行某个任务时,另外一个进程无需等待其执行完毕,就可以继续执行,当有消息返回时,系统会通知后者进行处理,这样可以提高执行效率
举个例子,打电话时就是同步通信,发短息时就是异步通信。
2.5 进程的创建
但凡是硬件,都需要有操作系统去管理,只要有操作系统,就有进程的概念,就需要有创建进程的方式,一些操作系统只为一个应用程序设计,比如微波炉中的控制器,一旦启动微波炉,所有的进程都已经存在。
而对于通用系统(跑很多应用程序),需要有系统运行过程中创建或撤销进程的能力,主要分为4中形式创建新的进程
1. 系统初始化(查看进程linux中用ps命令,windows中用任务管理器,前台进程负责与用户交互,后台运行的进程与用户无关,运行在后台并且只在需要时才唤醒的进程,称为守护进程,如电子邮件、web页面、新闻、打印)
2. 一个进程在运行过程中开启了子进程(如nginx开启多进程,os.fork,subprocess.Popen等)
3. 用户的交互式请求,而创建一个新进程(如用户双击暴风影音)
4. 一个批处理作业的初始化(只在大型机的批处理系统中应用)
无论哪一种,新进程的创建都是由一个已经存在的进程执行了一个用于创建进程的系统调用而创建的:
1. 在UNIX中该系统调用是:fork,fork会创建一个与父进程一模一样的副本,二者有相同的存储映像、同样的环境字符串和同样的打开文件(在shell解释器进程中,执行一个命令就会创建一个子进程)
2. 在windows中该系统调用是:CreateProcess,CreateProcess既处理进程的创建,也负责把正确的程序装入新进程。
关于创建的子进程,UNIX和windows
1.相同的是:进程创建后,父进程和子进程有各自不同的地址空间(多道技术要求物理层面实现进程之间内存的隔离),任何一个进程的在其地址空间中的修改都不会影响到另外一个进程。
2.不同的是:在UNIX中,子进程的初始地址空间是父进程的一个副本,提示:子进程和父进程是可以有只读的共享内存区的。但是对于windows系统来说,从一开始父进程与子进程的地址空间就是不同的。
2.6 进程的终止
1. 正常退出(自愿,如用户点击交互式页面的叉号,或程序执行完毕调用发起系统调用正常退出,在linux中用exit,在windows中用ExitProcess)
2. 出错退出(自愿,python a.py中a.py不存在)
3. 严重错误(非自愿,执行非法指令,如引用不存在的内存,1/0等,可以捕捉异常,try...except...)
4. 被其他进程杀死(非自愿,如kill -9)
2.7 进程的层次结构
无论UNIX还是windows,进程只有一个父进程,不同的是:
1. 在UNIX中所有的进程,都是以init进程为根,组成树形结构。父子进程共同组成一个进程组,这样,当从键盘发出一个信号时,该信号被送给当前与键盘相关的进程组中的所有成员。
2. 在windows中,没有进程层次的概念,所有的进程都是地位相同的,唯一类似于进程层次的暗示,是在创建进程时,父进程得到一个特别的令牌(称为句柄),该句柄可以用来控制子进程,但是父进程有权把该句柄传给其他子进程,这样就没有层次了。
回到顶部
2.8 进程的状态
tail -f access.log |grep '404'
执行程序tail,开启一个子进程,执行程序grep,开启另外一个子进程,两个进程之间基于管道'|'通讯,将tail的结果作为grep的输入。
进程grep在等待输入(即I/O)时的状态称为阻塞,此时grep命令都无法运行
其实在两种情况下会导致一个进程在逻辑上不能运行,
1. 进程挂起是自身原因,遇到I/O阻塞,便要让出CPU让其他进程去执行,这样保证CPU一直在工作
2. 与进程无关,是操作系统层面,可能会因为一个进程占用时间过多,或者优先级等原因,而调用其他的进程去使用CPU。
因而一个进程由三种状态
2.9 进程并发的实现
进程并发的实现在于,硬件中断一个正在运行的进程,把此时进程运行的所有状态保存下来,为此,操作系统维护一张表格,即进程表(process table),每个进程占用一个进程表项(这些表项也称为进程控制块)
该表存放了进程状态的重要信息:程序计数器、堆栈指针、内存分配状况、所有打开文件的状态、帐号和调度信息,以及其他在进程由运行态转为就绪态或阻塞态时,必须保存的信息,从而保证该进程在再次启动时,就像从未被中断过一样。
3、线程
3.1 什么是线程
在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程
线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程
车间负责把资源整合到一起,是一个资源单位,而一个车间内至少有一个流水线
流水线的工作需要电源,电源就相当于cpu
所以,进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位。
多线程(即多个控制线程)的概念是,在一个进程中存在多个控制线程,多个控制线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源。
例如,北京地铁与上海地铁是不同的进程,而北京地铁里的13号线是一个线程,北京地铁所有的线路共享北京地铁所有的资源,比如所有的乘客可以被所有线路拉。
创建进程的开销要远大于线程?
如果我们的软件是一个工厂,该工厂有多条流水线,流水线工作需要电源,电源只有一个即cpu(单核cpu)
一个车间就是一个进程,一个车间至少一条流水线(一个进程至少一个线程)
创建一个进程,就是创建一个车间(申请空间,在该空间内建至少一条流水线)
而建线程,就只是在一个车间内造一条流水线,无需申请空间,所以创建开销小
进程之间是竞争关系,线程之间是协作关系?
车间直接是竞争/抢电源的关系,竞争(不同的进程直接是竞争关系,是不同的程序员写的程序运行的,迅雷抢占其他进程的网速,360把其他进程当做病毒干死)
一个车间的不同流水线式协同工作的关系(同一个进程的线程之间是合作关系,是同一个程序写的程序内开启动,迅雷内的线程是合作关系,不会自己干自己)
3.2 为何要用多线程
多线程指的是,在一个进程中开启多个线程,简单的讲:如果多个任务共用一块地址空间,那么必须在一个进程内开启多个线程。详细的讲分为4点:
1. 多线程共享一个进程的地址空间
2. 线程比进程更轻量级,线程比进程更容易创建可撤销,在许多操作系统中,创建一个线程比创建一个进程要快10-100倍,在有大量线程需要动态和快速修改时,这一特性很有用
3. 若多个线程都是cpu密集型的,那么并不能获得性能上的增强,但是如果存在大量的计算和大量的I/O处理,拥有多个线程允许这些活动彼此重叠运行,从而会加快程序执行的速度。
4. 在多cpu系统中,为了最大限度的利用多核,可以开启多个线程(比开进程开销要小的多)
3.3 多线程的应用举例
开启一个字处理软件进程,该进程肯定需要办不止一件事情,比如监听键盘输入,处理文字,定时自动将文字保存到硬盘,这三个任务操作的都是同一块数据,因而不能用多进程。只能在一个进程里并发地开启三个线程,如果是单线程,那就只能是,键盘输入时,不能处理文字和自动保存,自动保存时又不能输入和处理文字。