复健训练难题扫除计划

写在最前

本次没有专门设置签到题, 为了降低一定的难度, 作者将题目思路写在了题目标题处

  • 预期结果: 8/13
  • 理想结果: 11/13
  • 实际结果: 9/13

B - 搜索

难点: TLE
需要多种剪枝:

  • 同等长度的棍子在搜索过一次时, 必不会再被搜索
  • 最终结果应不短于最长的棍子, 且不大于长度总和, 并且一定为总长度的某一约数
  • 应该先搜索较长的棍子, 这样搜索得到的搜索树较小

c - 贪心

难点: 思维
正常情况应以岛屿的X轴坐标为依据进行贪心, 但这样会导致错误结果
复健训练难题扫除计划

正确做法:

  • 以该岛屿所能涉及到的最右边的雷达为依据, 依次从小到大
    复健训练难题扫除计划

G - 最近公共祖先

难点: TLE, RE, WA, MLE, CE
尤其要注意的是, 本题两点间的距离为树上路径中所有节点点权的异或和
剩下的, 就是一个基础的LCA问题, 不会还不赶快去学

代码

#include <iostream>
#include <cstring>
#include <queue>

using namespace std;

const int N = 1e5 + 10, M = 2e5 + 10;

int n, m;
int c[N];
int h[N], e[M], ne[M], idx;
int dist[N], depth[N];
int fa[N][16];

void add(int a, int b){
    e[idx] = b;
    ne[idx] = h[a];
    h[a] = idx ++;
}

void dfs(int u, int fa){
    for(int i = h[u]; i != -1; i = ne[i]){
        int j = e[i];
        if(j == fa) continue;
        dist[j] ^= dist[u];
        dfs(j, u);
    }
}

void bfs(int u){
    memset(depth, 0x3f, sizeof depth);
    depth[0] = 0;
    depth[u] = 1;

    queue<int> q;
    q.push(u);
    while(q.size()){
        int t = q.front();
        q.pop();

        for(int i = h[t]; i != -1; i = ne[i]){
            int j = e[i];
            if(depth[j] > depth[t] + 1){
                depth[j] = depth[t] + 1;
                q.push(j);
                fa[j][0] = t;
                for(int k = 1; k <= 15; k ++)
                    fa[j][k] = fa[fa[j][k - 1]][k - 1];
            }
        }
    }
}

int lca(int a, int b){
    if(depth[a] < depth[b]) return lca(b, a);

    for(int k = 15; k >= 0; k --)
        if(depth[fa[a][k]] >= depth[b])
            a = fa[a][k];

    if(a == b) return a;

    for(int k = 15; k >= 0; k --)
        if(fa[a][k] != fa[b][k]){
            a = fa[a][k];
            b = fa[b][k];
        }

    return fa[a][0];
}

int main(){
    memset(h, -1, sizeof h);

    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) cin >> c[i], dist[i] = c[i];
    for (int i = 1; i < n; i ++){
        int a, b;
        cin >> a >> b;
        add(a, b), add(b, a);
    }

    dfs(1, -1);
    bfs(1);

    for (int i = 1; i <= m; i ++ ) {
        int a, b;
        cin >> a >> b;
        int p = lca(a, b);
        cout << (dist[a] ^ dist[b] ^ c[p]) << endl;
    }

    return 0;
}

I - 矩阵快速幂

难点: 无
\(\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \binom{f_n}{f_{n-1}} = \binom{f_{n+1}}{f_{n}}\)
同理会有扩展, 这类题目就需要自己去积累了

M - AK!!!

思路

难点: TLE, RE, WA, CE
大型的线段树, 二阶线段树
需要用到区间求和区间修改, 用到的知识点为: 懒标记

代码

#include <iostream>
#include <cstdio>

using namespace std;
typedef long long LL;

const int N = 1e5 + 10;

int n, m;
LL a[N];
struct Node {
    int l, r;
    LL sum, add;
}tr[N * 4];


void pushup(Node& u, Node& l, Node& r){
    u.sum = l.sum + r.sum;
}
void pushup(int u){
    pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}

void pushdown(Node& u, Node& l, Node& r){
    if(u.add){
        l.add += u.add, l.sum += (LL)(l.r - l.l + 1ll) * u.add;
        r.add += u.add, r.sum += (LL)(r.r - r.l + 1ll) * u.add;
        u.add = 0;
    }
}
void pushdown(int u) {
    pushdown(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
void build(int u, int l, int r) {
    if(l == r) {
        tr[u].l = l;
        tr[u].r = r;
        tr[u].sum = a[r];
        tr[u].add = 0;
        // tr[u] = { l, r, a[r], 0 };
        return ;
    }

    int mid = (l + r) >> 1;
    //tr[u] = { l, r };
    tr[u].l = l;
    tr[u].r = r;
    build(u << 1, l, mid);
    build(u << 1 | 1, mid + 1, r);
    pushup(u);
}
void modify(int u, int l, int r, LL c){
    if(tr[u].l >= l && tr[u].r <= r){
        tr[u].sum += (tr[u].r - tr[u].l + 1ll) * c;
        tr[u].add += c;
        return ;
    }

    pushdown(u);
    int mid = (tr[u].l + tr[u].r) >> 1;
    if(l <= mid) modify(u << 1, l, r, c);
    if(r > mid) modify(u << 1 | 1, l, r, c);
    pushup(u);
}
LL query(int u, int l, int r){
    if(tr[u].l >= l && tr[u].r <= r) return tr[u].sum;

    pushdown(u);
    int mid = (tr[u].l + tr[u].r) >> 1;
    LL sum = 0;
    if(l <= mid) sum += query(u << 1, l, r);
    if(r > mid) sum += query(u << 1 | 1, l, r);
    return sum;
}

int main(){
    scanf("%d%d", &n, & m);
    for (int i = 1; i <= n; i ++ ) scanf("%lld", a + i);
    build(1, 1, n);

    while(m --){
        char op[5];
        scanf("%s", &op);
        if(op[0] == 'Q'){
            int l, r;
            scanf("%d%d", &l, &r);
            cout << query(1, l, r) << endl;
        }
        else {
            int l, r, d;
            scanf("%d%d%d", &l, &r, &d);
            modify(1, l, r, d);
        }
    }
}
上一篇:「学习笔记」尺取法


下一篇:视频智能分析/视频上云服务平台EasyCVR通过GB28181级联后RTSP协议视频流无法播放问题排查