划分窗口就两种方式:
- 根据时间进行截取(time-driven-window),比如每1分钟统计一次或每10分钟统计一次。(time window)
- 根据数据进行截取(data-driven-window),比如每5个数据统计一次或每50个数据统计一次。(count window)
对于TimeWindow(根据时间划分窗口), 可以根据窗口实现原理的不同分成三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。
- 滚动窗口(Tumbling Windows)
将数据依据固定的窗口长度对数据进行切片。
特点:时间对齐,窗口长度固定,没有重叠。(窗口移动步长一致,步长就是窗口长度)
滚动窗口分配器将每个元素分配到一个指定窗口大小的窗口中,滚动窗口有一个固定的大小,并且不会出现重叠。
例如:如果你指定了一个5分钟大小的滚动窗口,窗口的创建如下图所示:
适用场景:适合做BI统计等(做每个时间段的聚合计算)。
- 滑动窗口(Sliding Windows)
滑动窗口是固定窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动间隔组成。
特点:时间对齐,窗口长度固定,有重叠。(窗口移动步长不一致)
滑动窗口分配器将元素分配到固定长度的窗口中,与滚动窗口类似,窗口的大小由窗口大小参数来配置,另一个窗口滑动参数控制滑动窗口开始的频率。因此,滑动窗口如果滑动参数小于窗口大小的话,窗口是可以重叠的,在这种情况下元素会被分配到多个窗口中。(步长并不一定小于窗口长度,所以也会统计漏掉数据)
例如,你有10分钟的窗口和5分钟的滑动,那么每个窗口中5分钟的窗口里包含着上个10分钟产生的数据,如下图所示:
适用场景:对最近一个时间段内的统计(求某接口最近5min的失败率来决定是否要报警)。
- 会话窗口(Session Windows)
由一系列事件组合一个指定时间长度的timeout间隙组成,类似于web应用的session,也就是一段时间没有接收到新数据就会生成新的窗口。
特点:时间无对齐。
session窗口分配器通过session活动来对元素进行分组,session窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,当它在一个固定的时间周期内不再收到元素,即非活动间隔产生,那个这个窗口就会关闭。一个session窗口通过一个session间隔来配置,这个session间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的session将关闭并且后续的元素将被分配到新的session窗口中去。
- Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳。
- Ingestion Time:是数据进入Flink的时间。
- Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time。
无论是count window还是time window 都可以分为 keyed window和no key window