【codeforces 707E】Garlands

【题目链接】:http://codeforces.com/contest/707/problem/E

【题意】



给你一个n*m的方阵;

里面有k个联通块;

这k个联通块,每个连通块里面都是灯;

给你q个操作;

有以下两种类型

①将第i个连通块里面灯取反

②询问你(x1,y1)(x2,y2)这个矩形区域内灯的权值的和;

【题解】



要用到二维的树状数组;

取反操作只要O(1)就能完成;

即先不管它是什么,取反就是了;

然后在询问的时候,直接用二维树状数组累加;

这里的累加可能是减也可能是加;

也可能不变;

搞根据flag数组的值和cha数组的值来判断;

然后就是一个二维的前缀和了;

具体的看代码吧。



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define ps push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%lld",&x)
#define ref(x) scanf("%lf",&x) typedef pair<int, int> pii;
typedef pair<LL, LL> pll; const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
const double pi = acos(-1.0);
const int K = 2e3+100; struct abc{
int x, y, w;
}; int n, m, k, num[K],cha[K],flag[K];
abc a[K][K];
char s[7];
LL sum[K][K]; int lowbit(int x) {return x&(-x);} void add(int x, int y, LL t){
while (x <= n){
int j = y;
while (j <= m) {
sum[x][j] += t;
j += lowbit(j);
}
x += lowbit(x);
}
} LL get_sum(int x, int y)
{
LL temp = 0;
while (x > 0){
int j = y;
while (j > 0){
temp += sum[x][j];
j -= lowbit(j);
}
x -= lowbit(x);
}
return temp;
} int main(){
//freopen("F:\\rush.txt", "r", stdin);
rei(n), rei(m), rei(k);
rep1(i, 1, k){
rei(num[i]);
rep1(j, 1, num[i]) rei(a[i][j].x), rei(a[i][j].y), rei(a[i][j].w);
cha[i] = 1;
}
int q;
rei(q);
while (q--) {
scanf("%s", s);
if (s[0] == 'S'){
int k; rei(k);
cha[k] = 1 - cha[k];
}
else{
rep1(i, 1, k)
if (cha[i]){
rep1(j, 1, num[i]) add(a[i][j].x, a[i][j].y, a[i][j].w*((flag[i] == 0) ? 1 : -1));
cha[i] = 0, flag[i] = 1 - flag[i];
}
int x1, y1, x2, y2;
rei(x1), rei(y1), rei(x2), rei(y2);
printf("%lld\n", get_sum(x2, y2) - get_sum(x1-1, y2) - get_sum(x2, y1-1) + get_sum(x1-1, y1-1));
}
}
//printf("\n%.2lf sec \n", (double)clock() / CLOCKS_PER_SEC);
return 0;
}
上一篇:【codeforces 415D】Mashmokh and ACM(普通dp)


下一篇:【codeforces 709D】Recover the String