添加了解码模块来重构精确的图像物体边界。对比如图
deeplab v3+采用了与deeplab v3类似的多尺度带洞卷积结构ASPP,然后通过上采样,以及与不同卷积层相拼接,最终经过卷积以及上采样得到结果。
deeplab v3:
基于提出的编码-解码结构,可以任意通过控制 atrous convolution 来输出编码特征的分辨率,来平衡精度和运行时间(已有编码-解码结构不具有该能力.).
可以用来挖掘不同尺度的上下文信息
PSPNet 对不同尺度的网络进行池化处理,处理多尺度的上下文内容信息
deeplab v3+以resnet101为backbone
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from modeling.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d BatchNorm2d = SynchronizedBatchNorm2d class Bottleneck(nn.Module):
#'resnet网络的基本框架’
expansion = def __init__(self, inplanes, planes, stride=, dilation=, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=, bias=False)
self.bn1 = BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=, stride=stride,
dilation=dilation, padding=dilation, bias=False)
self.bn2 = BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * , kernel_size=, bias=False)
self.bn3 = BatchNorm2d(planes * )
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
self.dilation = dilation def forward(self, x):
residual = x out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out) out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out) out = self.conv3(out)
out = self.bn3(out) if self.downsample is not None:
residual = self.downsample(x) out += residual
out = self.relu(out) return out class ResNet(nn.Module):
#renet网络的构成部分
def __init__(self, nInputChannels, block, layers, os=, pretrained=False):
self.inplanes =
super(ResNet, self).__init__()
if os == :
strides = [, , , ]
dilations = [, , , ]
blocks = [, , ]
elif os == :
strides = [, , , ]
dilations = [, , , ]
blocks = [, , ]
else:
raise NotImplementedError # Modules
self.conv1 = nn.Conv2d(nInputChannels, , kernel_size=, stride=, padding=,
bias=False)
self.bn1 = BatchNorm2d()
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=, stride=, padding=) self.layer1 = self._make_layer(block, , layers[], stride=strides[], dilation=dilations[])
self.layer2 = self._make_layer(block, , layers[], stride=strides[], dilation=dilations[])
self.layer3 = self._make_layer(block, , layers[], stride=strides[], dilation=dilations[])
self.layer4 = self._make_MG_unit(block, , blocks=blocks, stride=strides[], dilation=dilations[]) self._init_weight() if pretrained:
self._load_pretrained_model() def _make_layer(self, block, planes, blocks, stride=, dilation=):
downsample = None
if stride != or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=, stride=stride, bias=False),
BatchNorm2d(planes * block.expansion),
) layers = []
layers.append(block(self.inplanes, planes, stride, dilation, downsample))
self.inplanes = planes * block.expansion
for i in range(, blocks):
layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _make_MG_unit(self, block, planes, blocks=[, , ], stride=, dilation=):
downsample = None
if stride != or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=, stride=stride, bias=False),
BatchNorm2d(planes * block.expansion),
) layers = []
layers.append(block(self.inplanes, planes, stride, dilation=blocks[]*dilation, downsample=downsample))
self.inplanes = planes * block.expansion
for i in range(, len(blocks)):
layers.append(block(self.inplanes, planes, stride=, dilation=blocks[i]*dilation)) return nn.Sequential(*layers) def forward(self, input):
x = self.conv1(input)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x) x = self.layer1(x)
low_level_feat = x
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x, low_level_feat def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[] * m.kernel_size[] * m.out_channels
m.weight.data.normal_(, math.sqrt(. / n))
elif isinstance(m, BatchNorm2d):
m.weight.data.fill_()
m.bias.data.zero_() def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/resnet101-5d3b4d8f.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict) def ResNet101(nInputChannels=, os=, pretrained=False):
model = ResNet(nInputChannels, Bottleneck, [, , , ], os, pretrained=pretrained)
return model class ASPP_module(nn.Module):
#ASpp模块的组成
def __init__(self, inplanes, planes, dilation):
super(ASPP_module, self).__init__()
if dilation == :
kernel_size =
padding =
else:
kernel_size =
padding = dilation
self.atrous_convolution = nn.Conv2d(inplanes, planes, kernel_size=kernel_size,
stride=, padding=padding, dilation=dilation, bias=False)
self.bn = BatchNorm2d(planes)
self.relu = nn.ReLU() self._init_weight() def forward(self, x):
x = self.atrous_convolution(x)
x = self.bn(x) return self.relu(x) def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[] * m.kernel_size[] * m.out_channels
m.weight.data.normal_(, math.sqrt(. / n))
elif isinstance(m, BatchNorm2d):
m.weight.data.fill_()
m.bias.data.zero_() class DeepLabv3_plus(nn.Module):
#正式开始deeplabv3+的结构组成
def __init__(self, nInputChannels=, n_classes=, os=, pretrained=False, freeze_bn=False, _print=True):
if _print:
print("Constructing DeepLabv3+ model...")
print("Backbone: Resnet-101")
print("Number of classes: {}".format(n_classes))
print("Output stride: {}".format(os))
print("Number of Input Channels: {}".format(nInputChannels))
super(DeepLabv3_plus, self).__init__() # Atrous Conv 首先获得从resnet101中提取的features map
self.resnet_features = ResNet101(nInputChannels, os, pretrained=pretrained) # ASPP,挑选参数
if os == :
dilations = [, , , ]
elif os == :
dilations = [, , , ]
else:
raise NotImplementedError
#四个不同带洞卷积的设置,获取不同感受野
self.aspp1 = ASPP_module(, , dilation=dilations[])
self.aspp2 = ASPP_module(, , dilation=dilations[])
self.aspp3 = ASPP_module(, , dilation=dilations[])
self.aspp4 = ASPP_module(, , dilation=dilations[]) self.relu = nn.ReLU()
#全局平均池化层的设置
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((, )),
nn.Conv2d(, , , stride=, bias=False),
BatchNorm2d(),
nn.ReLU()) self.conv1 = nn.Conv2d(, , , bias=False)
self.bn1 = BatchNorm2d() # adopt [1x1, ] for channel reduction.
self.conv2 = nn.Conv2d(, , , bias=False)
self.bn2 = BatchNorm2d()
#结构图中的解码部分的最后一个3*3的卷积块
self.last_conv = nn.Sequential(nn.Conv2d(, , kernel_size=, stride=, padding=, bias=False),
BatchNorm2d(),
nn.ReLU(),
nn.Conv2d(, , kernel_size=, stride=, padding=, bias=False),
BatchNorm2d(),
nn.ReLU(),
nn.Conv2d(, n_classes, kernel_size=, stride=))
if freeze_bn:
self._freeze_bn()
#前向传播
def forward(self, input):
x, low_level_features = self.resnet_features(input)
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.upsample(x5, size=x4.size()[:], mode='bilinear', align_corners=True)
#把四个ASPP模块以及全局池化层拼接起来
x = torch.cat((x1, x2, x3, x4, x5), dim=)
#上采样
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = F.upsample(x, size=(int(math.ceil(input.size()[-]/)),
int(math.ceil(input.size()[-]/))), mode='bilinear', align_corners=True) low_level_features = self.conv2(low_level_features)
low_level_features = self.bn2(low_level_features)
low_level_features = self.relu(low_level_features) #拼接低层次的特征,然后再通过插值获取原图大小的结果
x = torch.cat((x, low_level_features), dim=)
x = self.last_conv(x)
x = F.interpolate(x, size=input.size()[:], mode='bilinear', align_corners=True) return x def _freeze_bn(self):
for m in self.modules():
if isinstance(m, BatchNorm2d):
m.eval() def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[] * m.kernel_size[] * m.out_channels
m.weight.data.normal_(, math.sqrt(. / n))
elif isinstance(m, BatchNorm2d):
m.weight.data.fill_()
m.bias.data.zero_() def get_1x_lr_params(model):
"""
This generator returns all the parameters of the net except for
the last classification layer. Note that for each batchnorm layer,
requires_grad is set to False in deeplab_resnet.py, therefore this function does not return
any batchnorm parameter
"""
b = [model.resnet_features]
for i in range(len(b)):
for k in b[i].parameters():
if k.requires_grad:
yield k def get_10x_lr_params(model):
"""
This generator returns all the parameters for the last layer of the net,
which does the classification of pixel into classes
"""
b = [model.aspp1, model.aspp2, model.aspp3, model.aspp4, model.conv1, model.conv2, model.last_conv]
for j in range(len(b)):
for k in b[j].parameters():
if k.requires_grad:
yield k if __name__ == "__main__":
model = DeepLabv3_plus(nInputChannels=, n_classes=, os=, pretrained=True, _print=True)
model.eval()
image = torch.randn(, , , )
with torch.no_grad():
output = model.forward(image)
print(output.size())