0.聚类
聚类就是对大量的未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,聚类属于无监督的学习方法。
1.内在相似性的度量
聚类是根据数据的内在的相似性进行的,那么我们应该怎么定义数据的内在的相似性呢?比较常见的方法是根据数据的相似度或者距离来定义的,比较常见的有:
- 闵可夫斯基距离/欧式距离
上述距离公式中,当p=2时,就是欧式距离,当p=1时,就是绝对值的和,当p=正无穷时,这个距离变成了维度差最大的那个值。
- 杰卡德相似系数
一般是度量集合之间的相似性。
- 余弦相似度
- Pearson相似系数
对于n维向量的夹角,根据余弦定理,可到:
又由相关系数的计算公式,可得:
不难发现,相关系数就是将x,y坐标向量各自平移到原点后的夹角余弦。
- 相对熵(K-L距离)
2.聚类的基本思想
1.给定一个有N个对象的数据集,构造数据的K个簇,k<=n,并且满足下列条件:
每一个簇至少包含一个对象。
每一个对象属于且仅属于一个簇。
将满足上述条件的K个簇称作一个合理划分。
2.基本思想:对于给定的类别K,首先给定初始的划分,通过迭代改变样本和簇的隶属关系,使得每一次改进之后的划分方案都较前一次好。
3.K-Means算法
K-means算法,也被称为K-平均或K-均值,是一种广泛使用的聚类算法,或者成为其他聚类算法的基础。
假定输入样本为S=x1, x2, ......, xm,则算法步骤为:
选择初始的k个类别中心,u1, u2, ......, uk。
对于每个样本的xi,将其中标记为距离类别中心最近的类别,即:
将每个类别中心更新为隶属该类别的所有样本的均值。
重复后面的两步,直到类别中心变化小于某阈值。
终止条件:
迭代次数,簇中心变化率,最小平方误差MSE。
4.K-Means的公式化解释
记K个簇中心为u1,u2,......,uk,每个簇的样本数目为N1,N2,......,Nk。
使用平方误差作为目标函数:
该函数为关于u1,u2,......,uk的凸函数,计算其驻点,得:
5.K-Means聚类方法总结
优点:
一种经典算法,简单,快速的聚类算法。
对于大数据集,该算法保持可伸缩性和高效率。
当簇近似为高斯分布时,它的效果较好。
缺点:
在簇的平均值可被定义的情况下才能使用,可能不适用某些情况。
必须实现给出K(聚类的簇数目),而且是初值敏感的,对于不同的初始值,可能会导致不同的结果。
不适合于发现非凸型的簇或者大小差别很大的簇。
对噪声和孤立点数据敏感。
在很多情况下,可以作为其他聚类的基础算法,比如谱聚类。
6.代码示例
if __name__ == '__main__':
N = 400
centers = 4
data1, y1 = make_blobs(n_samples=N, n_features=2, centers= centers, random_state=2)
data2, y2 = make_blobs(n_samples=N, n_features=2, centers=centers, cluster_std=(1, 2.5, 0.5, 2), random_state=2)
plt.figure()
plt.plot(data1[:, 0], data1[:, 1], 'ro', data2[:, 0], data2[:, 1], 'g*')
plt.show() data = np.vstack((data1[y1 == 0][:], data1[y1 == 1][:50], data1[y1 == 2][:20], data1[y1 == 3][:5]))
y = np.array([0] * 100 + [1] * 50 + [2] * 20 + [3] * 5)
# print(data)
# print(y)
# plt.figure()
# plt.plot(data[:100, 0], data[:100, 1], 'ro',
# data[100:150, 0], data[100:150, 1], 'g*',
# data[150:170, 0], data[150:170, 1], 'b*',
# data[170:175, 0], data[170:175, 1], 'k*')
# plt.show() cls = KMeans(n_clusters=4, init='k-means++')
y1_hat = cls.fit_predict(data1)
y2_hat = cls.fit_predict(data2)
y_hat = cls.fit_predict(data)
# print(y1_hat)
KMeans函数的参数详解:
n_clusters:整型,缺省值=8 ,生成的聚类数。
max_iter:整型,缺省值=300 。
执行一次k-means算法所进行的最大迭代数。
n_init:整型,缺省值=10 。
用不同的聚类中心初始化值运行算法的次数,最终解是在inertia意义下选出的最优结果。
init:有三个可选值:’k-means++’, ‘random’,或者传递一个ndarray向量。
此参数指定初始化方法,默认值为 ‘k-means++’。
(1)‘k-means++’ 用一种特殊的方法选定初始聚类中发,可加速迭代过程的收敛。
(2)‘random’ 随机从训练数据中选取初始质心。
(3)如果传递的是一个ndarray,则应该形如 (n_clusters, n_features) 并给出初始质心。
precompute_distances:三个可选值,‘auto’,True 或者 False。
预计算距离,计算速度更快但占用更多内存。
(1)‘auto’:如果 样本数乘以聚类数大于 12million 的话则不预计算距离。
(2)True:总是预先计算距离。
(3)False:永远不预先计算距离。
tol:float类型,默认值= 1e-4 与inertia结合来确定收敛条件。
n_jobs:整形数。 指定计算所用的进程数。内部原理是同时进行n_init指定次数的计算。
(1)若值为 -1,则用所有的CPU进行运算。若值为1,则不进行并行运算。
(2)若值小于-1,则用到的CPU数为(n_cpus + 1 + n_jobs)。因此如果 n_jobs值为-2,则用到的CPU数为总CPU数减1。
random_state:整型或 numpy.RandomState 类型,可选
用于初始化质心的生成器(generator)。如果值为一个整数,则确定一个seed。此参数默认值为numpy的随机数生成器。
copy_x:布尔型,默认值=True
当我们precomputing distances时,将数据中心化会得到更准确的结果。如果把此参数值设为True,则原始数据不会被改变。如果是False,则会直接在原始数据
上做修改并在函数返回值时将其还原。但是在计算过程中由于有对数据均值的加减运算,所以数据返回后,原始数据和计算前可能会有细小差别。
聚类结果:
在聚类的过程中,我们发现,如果对数据进行一定的变化,得到的聚类结果可能有所不同,比如旋转。