原题:
Magical Number
1000ms 131072K
描述:
We consider a natural number pp with kk digits, a1a2..ak(a1≠0)a1a2..ak¯(a1≠0), is magical only when it satisfies:
Every number composed by leading digits of pp can be divisible by the number of its digits.
More formally, ∀i∈[1,k]∀i∈[1,k],i|a1a2..ai。
For example, 123 is magical, because 1|1, 2|12, 3|123。
However,124 is not magical, because 3∤124。
Every digit can be composed with match sticks in the following ways.
What is the largest posible magical number you can compose with exactly nn match sticks?
输入:
The input contains a integer n(1≤n≤10100)n(1≤n≤10100), the number of match sticks you have .
输出:
Print the largest posible magical number xx that can be possibly composed with exactly nn match sticks.
If the number doesn't exist, print −1−1.
(链接:https://acs.jxnu.edu.cn/problem/ICPCJX2020F)
翻译:
魔力数字
由k位数组成的自然数p,a1a2···ak(ai!=0)只有当它满足:每个由前导位数p组成的数字能被p的位数整除,我们认为它是一个魔力数字。
即∀i∈[1,k],i|a1a2..ai
例如,123是一个魔力数字,因为1|1,2|12(12能被2整除),3|123(123能被3整除)
然而,124不是个魔力数字,因为3∤124(124不能被3整除)
每个数字都能用火柴棍按下面方式摆出来。
你用n根火柴棍最大可能能拜出的魔力数字是?
输入:
输入一个整数n(1<=n<=10^100),代表你有的火柴棍;
输出:
输出最大可能的魔力数字x,可能由n根火柴棍组成。
如果数字不存在,输出-1。