一、二分答案:
在答案可能的范围内[L,R]二分查找答案,检查当前答案是否满足题目的条件要求,根据判断结果更新查找区间。
二、题目类型:
求最大值、最小值、求满足条件的最大值或最小值、最大值中的最小值、最小值中的最大值、靠近的值。
三、模板:yxc
1.求符合条件的最小值:
//求符合条件中的最小值
bool check(int x){}// 检查x是否满足条件
// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用
int sreach(int l,int r)
{
while(l < r)
{
int mid = (l + r) >> 1;
if(check(mid)) r = mid;
else l = mid + 1;
}
return l;
}
2.求符合条件的最大值:
//求符合条件中的最大值
bool check(int x){}// 检查x是否满足条件
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int sezrch(int l, int r) {
while (l < r) {
int mid = l + r >> 1;
if (check(mid))l = mid;
else r = mid - 1;
}
return 1;
}
3.浮点数二分算法模板:
bool check(double x) {} // 检查x是否满足某种性质
double search(double l, double r)
{
const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求
while (r - l > eps)
{
double mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
return l;
}
四、例题:
这是一个浮点数二分答案算法,两个根距离的绝对值大于等于1,说明两个相邻整数之间最多有一个根,因此,我们选取两个相邻的整数并利用二分法查找根的位置。
#include<iostream>
#include<cstring>
using namespace std;
double a, b, c, d;
int s = 0;
const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求
double f(double x) { return a * x * x * x + b * x * x + c * x + d; }
double search(double l, double r)
{
while (r - l > eps)
{
double mid = (l + r) / 2.0;
if (f(l)*f(mid)<0) r = mid;
else l = mid;
}
return l;
}
int main() {
cin >> a >> b >> c >> d;
for (double i = -100; i <= 100; i++) {
double z1 = f(i);
double z2 = f(i + 1);
if (z1 == 0)
printf("%.2f ", i);
else if (z1 * z2 < 0)
printf("%.2f ",search(i, i + 1));
}
return 0;
}
这是一个普通二分答案算法问题,求符合条件的最小值问题,先算出和的区间,最小值为数字里最大的数,最大值则是数组之和,在这个区间上找到符合条件的最小值。
#include<iostream>
#include<algorithm>
using namespace std;
int m, n, z1 = 0, z2 = 0;
int a[100005];
bool check(int x) {
int p = 0, num = 0;
for (int i = 0; i < n; i++) {
if (p + a[i] <= x)p += a[i];
else p = a[i], num++;
}
return num < m;
}
int search(int l, int r) {
while (l < r) {
int mid = l + r >> 1;
if (check(mid))r = mid;
else l = mid + 1;
}
return l;
}
int main() {
cin >> n >> m;
for (int i = 0; i < n; i++) {
cin >> a[i];
z1 = max(z1,a[i]);
z2 += a[i];
}
cout << search(z1, z2);
return 0;
}
跟上面的题一个道理,只不过要将区间写出来,我们首先求出最小复制时间后,根据题意可知,要让前面的人尽可能少抄,后面的尽可能多抄,因此要从n到1进行分组。
#include<iostream>
#include<algorithm>
using namespace std;
int m, n, z1 = 0, z2 = 0;
int a[550];
struct r {
int s, e;
}b[550];
bool check(int x) {
int p = 0, num = 0;
for (int i = 1; i <= n; i++) {
if (p + a[i] <= x)p += a[i];
else {
p = a[i];
num++;
}
}
return num < m;
}
int search(int l, int r) {
while (l < r) {
int mid = l + r >> 1;
if (check(mid))r = mid;
else l = mid + 1;
}
return l;
}
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> a[i];
z1 = max(z1, a[i]);
z2 += a[i];
}
int f = search(z1, z2);
int p = 0, j = m;
b[1].s = 1;
b[m].e = n;
for (int i = n; i >= 1; i--) {
if (p + a[i] > f) {
p = a[i];
b[j].s = i+1;
b[--j].e = i;
}
else p += a[i];
}
for (int i = 1; i <= m; i++) {
cout << b[i].s << " " << b[i].e << endl;
}
return 0;
}