给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。
你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
示例 1:
输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
输出:[[7,4,1],[8,5,2],[9,6,3]]
示例 2:
输入:matrix = [[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,16]]
输出:[[15,13,2,5],[14,3,4,1],[12,6,8,9],[16,7,10,11]]
示例 3:
输入:matrix = [[1]]
输出:[[1]]
示例 4:
输入:matrix = [[1,2],[3,4]]
输出:[[3,1],[4,2]]
class Solution { public void rotate(int[][] matrix) { int n = matrix.length; int[][] matrix_new = new int[n][n]; for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { matrix_new[j][n - i - 1] = matrix[i][j]; } } for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { matrix[i][j] = matrix_new[i][j]; } } } }
讲道理这道题我以为有一些特别的解法……结果默认解法是用新数组套进去……进阶的解法才是用原地翻转。我一开始就想着要把它原地翻转,脑子真的转不过来了……这里的解法是用新的数组套进去。最核心的是用一个式子套出原数组中的数字翻转后的位置:matrix(new)[col][n−row−1] = matrix[ i ][ j ]