hdu1573:数论,线性同余方程组

题目大意:

给定一个N ,m

找到小于N的  对于i=1....m,满足  x mod ai=bi  的 x 的数量。

分析

先求出 同余方程组 的最小解x0,然后 每增加lcm(a1...,am)都会存在一个解,注意必须小于N 不能等于

代码:

#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define MAXN 10000
int a[];
int b[];
int n,m;
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int lcm(int a,int b)
{
return a*b/(gcd(a,b));
}
int exgcd(int a,int b,int &x,int &y)
{
if(!b)
{
x=;
y=;
return a;
}
int tt=exgcd(b,a%b,x,y);
int t;
t=x;
x=y;
y=(t-a/b*y);
return tt;
}
int solve()
{
int a1,a2,b1,b2,x,y,A,B,C,d,t;
a1=a[];
b1=b[];
for(int i=;i<m;i++)
{
a2=a[i];
b2=b[i];
A=a1;
B=a2;
C=b2-b1;
d=exgcd(A,B,x,y);
if(C%d)
{
return -;
}
t=B/d;
x=(x*(C/d)%t+t)%t;
b1=a1*x+b1;
a1=a1/d*a2;
}
return b1;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=;i<m;i++)
{
scanf("%d",a+i);
}
for(int i=;i<m;i++)
{
scanf("%d",b+i);
}
int lm=;
for(int i=;i<m;i++)
{
lm=lcm(a[i],lm);
}
int ans=;
int tmp=solve();
if(tmp==-)
{
puts("");
continue;
}
if(tmp<=n)
ans+=+(n-tmp)/lm;
if(ans&&tmp==)
ans--;
cout<<ans<<endl;
}
return ;
}
上一篇:Android7.0 PowerManagerService 之亮灭屏(一)


下一篇:GCD封装的个人理解和应用